Abstract
In this article, we study the entanglement properties of two-qubit quantum states based on concurrence using the graph-theoretic approach. Entanglement properties of a density operator are obtained from the combinatorial Laplacian matrix which is constructed for a given graph. In the study of entanglement, we found that measure of entanglement is either \( \frac{1}{ |{E}| } \) or zero for simple graphs. We further propose a simple method to evaluate the three-tangle and analyze inequivalent classes belonging to three-qubit pure states using graph-theoretic perspective. Our results allow a clear distinction between three-qubit separable states, genuinely entangled Greenberger–Horne–Zeilinger and W states, purely based on graphical interpretations.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(|{E}| \) :
-
Cardinality of edge set E
- \( ||a+ib || \) :
-
Absolute value of \(a+ib\)
- \( |{\alpha }\rangle \) :
-
Ket vector or column vector \( |{0}\rangle = \left[ \begin{array}{r}1 \\ 0 \end{array}\right] \) and \( |{1}\rangle = \left[ \begin{array}{r} 0 \\ 1\end{array}\right] \)
- \( \langle {\alpha }|\) :
-
Bra vector or row vector \( \langle {0}| = \left[ \begin{array}{rr} 1&0 \end{array}\right] \) and \( \langle {1}| = \left[ \begin{array}{rr} 0&1 \end{array}\right] \)
- Tr(A) :
-
Trace of matrix A
- \( \mathrm {null}(A) \) :
-
Null space of A
- det(A) :
-
Determinant of matrix A
- \(\rho _G\) :
-
Density operator of graph G
- \(C(\rho )\) :
-
Concurrence of the density operator
- \(\varTheta \) :
-
Measure of entanglement in \( {{\mathbb {C}}}^n\otimes {{\mathbb {C}}}^n \)
References
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Information and Quantum Computation, vol. 2, no. 8, p. 23. Cambridge University Press, Cambridge (2000)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)
Bapat, R.B.: Graphs and Matrices, vol. 27. Springer, New York (2010)
West, D.B., et al.: Introduction to Graph Rheory, vol. 2. Prentice Hall, Upper Saddle River (2001)
Hall, B.C.: Quantum Theory for Mathematicians, vol. 267. Springer, New York (2013)
Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, vol. 186. American Mathematical Soc., Providence (2013)
Braunstein, S.L., Ghosh, S., Severini, S.: The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states. Ann. Comb. 10(3), 291–317 (2006)
Dür, W., Aschauer, H., Briegel, H.-J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91(10), 107903 (2003)
Adhikari, B., Banerjee, S., Adhikari, S., Kumar, A.: Laplacian matrices of weighted digraphs represented as quantum states. Quantum Inf. Process. 16(3), 79 (2017)
Hassan, A.S.M., Joag, P.S.: A combinatorial approach to multipartite quantum systems: basic formulation. J. Phys. A Math. Theor. 40(33), 10251 (2007)
Bell, J.S.: Physics 1, vol. 195 (1964). Google Scholar (1966)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
Dutta, S., Adhikari, B., Banerjee, S.: Zero discord quantum states arising from weighted digraphs (2017). arXiv preprint arXiv:1705.00808
Dutta, S., Adhikari, B., Banerjee, S., Srikanth, R.: Bipartite separability and nonlocal quantum operations on graphs. Phys. Rev. A 94(1), 012306 (2016)
Wu, C.W.: Conditions for separability in generalized laplacian matrices and diagonally dominant matrices as density matrices. Phys. Lett. A 351(1), 18–22 (2006)
Hall, M.J.W.: Random quantum correlations and density operator distributions. Phys. Lett. A 242(3), 123–129 (1998)
Meyer, C.D.: Matrix Analysis and Applied Linear Algebra, vol. 71. SIAM, Philadelphia (2000)
Mintert, F., Carvalho, A.R.R., Kuś, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415(4), 207–259 (2005)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)
Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms, vol. 32. Elsevier, Amsterdam (1988)
Braunstein, S.L., Ghosh, S., Mansour, T., Severini, S., Wilson, R.C.: Some families of density matrices for which separability is easily tested. Phys. Rev. A 73(1), 012320 (2006)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)
Hou, Q.-H., Mansour, T., Severini, S.: Partial transposes of permutation matrices. Integers: Electron. J. Comb. Number Theory 8(A49), A49 (2008)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)
Eltschka, C., Siewert, J.: Quantifying entanglement resources. J. Phys. A Math. Theor. 47(42), 424005 (2014)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)
Lee, S., Joo, J., Kim, J.: Entanglement of three-qubit pure states in terms of teleportation capability. Phys. Rev. A 72(2), 024302 (2005)
Acknowledgements
The authors are grateful to Satish Sangwan and Supriyo Dutta for their valuable comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
-
1.
\( det( L^A) = 0 \Rightarrow C(\rho ) = 0.\)
Proof
Laplacian matrix of four vertices graph is given as
The reduced form of Laplacian matrix is defined by
Since, \(M = \rho \times p\times {\rho }^* \times p\) and \(p = \sigma _y \otimes \sigma _y \).
For a Laplacian matrix
-
(a)
\( \sum _{j=1}^{n} a_{ij} = 0 , ~~~ \forall ~i\) and \(\sum _{i=1}^{n} a_{ij} = 0 , ~~~ \forall ~j \);
-
(b)
All non-diagonal elements are either negative or zero.
If \( det(L^A)=0\), then
\(\square \)
From Eqs. (25), (26), (27), (28), and (29), we get
\(\Rightarrow b=d=f=i =0 \).
Using all these conditions, we can prove that all the elements of matrix M are zero. \(\Rightarrow C(\rho ) = 0. \)
-
2.
\( det( L^A) \ne 0 \Rightarrow C(\rho ) = {\left\{ \begin{array}{ll} 0 &{}\quad {D(G) = D(G')},\\ \frac{1}{|{E}|} &{}\quad {D(G) \ne D(G')} \end{array}\right. }\).
Proof
This observation can be proved using Theorem 6 and Theorem 7. \(\square \)
Rights and permissions
About this article
Cite this article
Joshi, A., Singh, R. & Kumar, A. Concurrence and three-tangle of the graph. Quantum Inf Process 17, 327 (2018). https://doi.org/10.1007/s11128-018-2085-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2085-5