Abstract
Based on Bell states, this paper proposes a semi-quantum protocol enabling the limited semi-quantum or “classical” user Bob to transmit the secret message to a fully quantum Alice directly. A classical user is restricted to measure, prepare, reorder and send quantum states only in the classical basis \( \{ \left| 0 \right\rangle ,\left| 1 \right\rangle \} \). The protocol must rely on the quantum Alice to produce Bell states, perform Bell basis measurement and store qubits, but the classical party Bob does not require quantum memory. Security and efficiency of the proposed schemes have been discussed. The analysis results show that the protocol is secure against some eavesdropping attacks and the qubit efficiency of the protocol is higher than the other related semi-quantum protocols.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. Lett. 65(3), 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory (2016). arXiv:1609.09184
Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
Hu, J., Yu, B., Jing, M., Xiao, L., Jia, S., Qin, G.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)
Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by Einstein–Podolsky–Rosen pairs and entanglement swapping (2004). arXiv:quant-ph/0406083
Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Uma, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)
Man, Z.X., Xia, Y.J., Nguyen, B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)
Man, Z.X., Xia, Y.J.: Efficient one-sender versus N-receiver quantum secure direct communication. Chin. Phys. Lett. 23(8), 1973–1975 (2006)
Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)
Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)
Man, Z.X., Xia, Y.J.: Quantum secure direct communication via partially entangled states. Chin. Phys. 16(5), 1197–1200 (2007)
Li, X.H., Li, C.Y., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)
Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78(6), 064304 (2008)
Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)
Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)
Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)
Gu, B., Huang, Y.G., Fang, X., Zhang, Y.L.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(10), 659–663 (2011)
Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)
Yang, Y.Y.: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53(7), 2216–2221 (2014)
Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)
Li, Y.B., Song, T.T., Huang, W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)
Li, W.L., Chen, J.B., Wang, X., Li, C.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)
Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 160307 (2015)
Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)
Chang, C.H., Luo, Y.P., Yang, C.W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)
Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)
Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–48 (2017)
Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)
Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)
Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)
Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 1–10 (2015)
Gu, B., Zhang, C.Y.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)
Gu, B., Huang, Y.G., Fang, X., Chen, Y.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)
Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 266(2), 732–737 (2006)
Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)
Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)
Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)
Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)
Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)
Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)
Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)
Yu, K.F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)
Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)
Xian-Zhou, Z., Wei-Gui, G., Yong-Gang, T., Zhen-Zhong, R., Xiao-Tian, G.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143 (2009)
Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)
Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)
Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)
Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)
Zhang, M.H., Li, H.F., Peng, J.Y.: Semiquantum secure direct communication using ERP pairs. Quantum Inf. Process 16(5), 117 (2017)
Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)
Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution (2017). arXiv:1701.07044v2
Ye, Tian-Yu., Ye, Chong-Qiang: Semi-quantum dialogue based on single photons. Int. J. Theor. Phys. 57(5), 1440–1454 (2018)
Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)
Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)
Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)
Damgard, I.B.: A design principle for hash functions. Adv. Cryptol. 89(435), 416–427 (1990)
Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–795 (2002)
Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)
Thapliyal, K., Sharma, R.D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment (2017). arXiv:1608.00101
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61402058, 61572086), and the Sichuan Science and Technology Program (Grant Nos. 2018TJPT0012, 2017GZ0006).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yan, L., Sun, Y., Chang, Y. et al. Semi-quantum protocol for deterministic secure quantum communication using Bell states. Quantum Inf Process 17, 315 (2018). https://doi.org/10.1007/s11128-018-2086-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2086-4