Skip to main content
Log in

Quantum coherence as indicators of quantum phase transitions, factorization and thermal phase transitions in the anisotropic XY model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantifying quantum coherence has attracted considerable interests. In the present work, we employ two measures of quantum coherence recently proposed in terms of the skew information and the trace norm, respectively, to investigate the quantum phase transitions (QPTs), factorization in the XY model and the thermal phase transitions (TPTs) in the transverse field Ising model. Two quantifications of quantum nonlocality via the same distance measure of the quantum coherence are also studied for reference. It is shown that two types of quantum coherence are reliable in identifying QPTs and TPTs. However, only the quantum coherence based on the skew information can detect factorization. In addition, the quantum coherence and nonlocality measured via the same distance space have similar finite temperature scaling law, while the quantum coherence based on skew information and trace norm has different finite temperature scaling law. Moreover, the skew-information-based quantum coherence at finite temperature suggests that factorization vanishes when temperature exceeds 0.02 (Boltzmann constant \(k_{B} = 1\)), which is in agreement with the results of the fidelity for states with different distances of spin-pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  4. Hu, M.-L., Hu, X., Wang, J.-C., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and quantum correlations. arXiv:1703.01852v2

  5. Sachdev, S.: Quantum Phase Transitions. Wiley, Hoboken (2007)

    Book  Google Scholar 

  6. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to quantum phase transitions. Nature (London) 416, 608 (2002)

    Article  ADS  Google Scholar 

  7. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89, 134101 (2014)

    Article  ADS  Google Scholar 

  10. Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-\(\frac{1}{2}\) chain. Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  11. Campbell, S., Richens, J., Gullo, N.L., Busch, T.: Criticality, factorization, and long-range correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)

    Article  ADS  Google Scholar 

  12. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  13. Cheng, C.-C., Wang, Y., Guo, J.-L.: One-norm geometric quantum discord and critical point estimation in the XY spin chain. Ann. Phys. 374, 237 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  15. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hillery, M.: Coherence as a resource in decision problems: the Deutsch–Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)

    Article  ADS  Google Scholar 

  17. Giorda, P., Allegra, M.: Coherence in quantum estimation. arXiv:1611.02519

  18. Chen, J.-J., Cui, J., Zhang, Y.-R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A 94, 022112 (2016)

    Article  ADS  Google Scholar 

  19. Sha, Y.-T., Wang, Y., Sun, Z.-H., Hou, X.-W.: Thermal quantum coherence and correlation in the extended XY spin chain. Ann. Phys. 327, 3084 (2018)

    MathSciNet  Google Scholar 

  20. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A 96, 012341 (2017)

    Article  ADS  Google Scholar 

  21. Giampaolo, S.M., Adesso, G., Illuminati, F.: Theory of ground state factorization in quantum cooperative systems. Phys. Rev. Lett. 100, 197201 (2008)

    Article  ADS  Google Scholar 

  22. Giampaolo, S.M., Adesso, G., Illuminati, F.: Probing quantum frustrated systems via factorization of the ground state. Phys. Rev. Lett. 104, 207202 (2010)

    Article  ADS  Google Scholar 

  23. Giorgi, G.L.: Ground-state factorization and quantum phase transition in dimerized spin chains. Phys. Rev. B 79, 060405(R) (2009)

    Article  ADS  Google Scholar 

  24. Sachdev, S., Young, A.P.: Low temperature relaxational dynamics of the Ising chain in a transverse field. Phys. Rev. Lett. 78, 2220 (1997)

    Article  ADS  Google Scholar 

  25. Osterloh, A., Schützhold, R.: Four-concurrence in the transverse XY spin-1/2 chain. Phys. Rev. A 96, 012331 (2017)

    Article  ADS  Google Scholar 

  26. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  27. Quan, H.T., Cucchietti, F.M.: Quantum fidelity and thermal phase transitions. Phys. Rev. E 79, 031101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  29. Shao, L.-H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)

    Article  ADS  Google Scholar 

  30. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measures of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Barouch, E., McCoy, B.M., Dresden, M.: Statistical mechanics of the XY model. \(I\). Phys. Rev. A 2, 1075 (1970)

    Article  ADS  Google Scholar 

  32. Barouch, E., McCoy, B.M.: Statistical mechanics of the XY model. \(II\). Spin-correlation functions. Phys. Rev. A 3, 786 (1971)

    Article  ADS  Google Scholar 

  33. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kinross, A.W., Fu, M., Munsie, T.J., Dabkowska, H.A., Luke, G.M., Sachdev, S., Imai, T.: Evolution of quantum fluctuations near the quantum critical point of the transverse field Ising chain system \(\text{ CoNb }_{2}\text{ O }_{6}\). Phys. Rev. X 4, 031008 (2014)

    Google Scholar 

  35. Wu, S.-X., Zhang, J., Yu, C.-S., Song, H.-S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  36. Hu, M.-L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New. J. Phys. 17, 033004 (2015)

    Article  ADS  Google Scholar 

  37. Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  38. Yu, X.-D., Zhang, D.-J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)

    Article  ADS  Google Scholar 

  39. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  40. Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)

    Article  ADS  Google Scholar 

  41. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. Phys. Rev. A 91, 052311 (2015)

    Article  Google Scholar 

  42. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)

    Article  ADS  Google Scholar 

  44. Altintas, F., Eryigit, R.: Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. 327, 3084 (2012)

    Article  ADS  Google Scholar 

  45. Bonfim, O.F.de A., Boechat, B., Florencio, J.: Quantum fidelity approach to the ground-state properties of the one-dimensional axial next-nearest-neighbor Ising model in a transverse field. Phys. Rev. E 96, 042140 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. Hu, T., Xue, K., Li, X., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization. Phys. Rev. E 94, 052119 (2016)

    Article  ADS  Google Scholar 

  47. Tomasello, B., Rossini, D., Hamma, A., Amico, L.: Ground-state factorization and correlations with broken symmetry. EPL 96, 27002 (2011)

    Article  ADS  Google Scholar 

  48. Heras, U.L., Mezzacapo, A., Lamata, L., Filipp, S., Wallraff, A., Solano, E.: Digital quantum simulation of spin systems in superconducting circuits. Phys. Rev. Lett. 112, 200501 (2014)

    Article  ADS  Google Scholar 

  49. Mezzacapo, A., Casanova, J., Lamata, L., Solano, E.: Digital quantum simulation of the Holstein model in trapped ions. Phys. Rev. Lett. 109, 200501 (2012)

    Article  ADS  Google Scholar 

  50. Ren, J., Wang, Y., You, W.-L.: Quantum phase transitions in spin-1 XXZ chains with rhombic single-ion anisotropy. Phys. Rev. A 97, 042318 (2018)

    Article  ADS  Google Scholar 

  51. Joyia, W., Khan, K.: Exploring the tripartite entanglement and quantum phase transition in the XXZ+h model. Quant. Inf. Proc. 16, 243 (2017)

    Article  MathSciNet  Google Scholar 

  52. Zhang, X.-Z., Guo, J.-L.: Quantum correlation and quantum phase transition in the one-dimensional extended Ising model. Quant. Inf. Proc. 16, 223 (2017)

    Article  MathSciNet  Google Scholar 

  53. Liu, M., Chesi, S., Ying, Z.-J., Chen, X., Luo, H.-G., Lin, Hai-Qing: Universal scaling and critical exponents of the anisotropic quantum Rabi model. Phys. Rev. Lett. 119, 220601 (2017)

    Article  ADS  Google Scholar 

  54. Hwang, M.-J., Puebla, R., Plenio, M.B.: Quantum phase transition and universal dynamics in the Rabi model. Phys. Rev. Lett. 115, 180404 (2015)

    Article  ADS  Google Scholar 

  55. Xie, Q.-T., Cui, S., Cao, J.-P., Amico, L., Fan, H.: Anisotropic Rabi model. Phys. Rev. X 4, 021046 (2014)

    Google Scholar 

  56. Hwang, M.-J., Plenio, M.B.: Quantum phase transition in the finite Jaynes–Cummings lattice systems. Phys. Rev. Lett. 117, 123602 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YJ., Zhou, J., Li, SP. et al. Quantum coherence as indicators of quantum phase transitions, factorization and thermal phase transitions in the anisotropic XY model. Quantum Inf Process 17, 320 (2018). https://doi.org/10.1007/s11128-018-2090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2090-8

Keywords

Navigation