Skip to main content
Log in

Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Wang and Ma (Quantum Inf Process 16(5):130, 2017) proposed two interesting quantum key agreement protocols with a single photon in both polarization and spatial-mode degrees of freedom. They claimed that the privacy of participants’ secret keys in the multiparty case is protected against dishonest participants. However, in this paper, we prove that two dishonest participants can deduce the secret key of an honest one using a fake sequence of single photons, without being detected. Also, we propose an additional security detection process to avoid the security loophole in their protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennet, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zhao, N., Li, M., Chen, N., Zhu, C.-H., Pei, C.-X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)

    Article  MathSciNet  Google Scholar 

  5. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  6. Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42(11), 115303 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Sarvaghad-Moghaddam, M., Farouk, A., Abulkasim, H.: Bidirectional Quantum Controlled Teleportation by Using Five-qubit Entangled State as a Quantum Channel (2018). arXiv preprint arXiv:1806.07061

  8. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  9. Farouk, A., Zakaria, M., Megahed, A., Omara, F.A.: A generalized architecture of quantum secure direct communication for N disjointed users with authentication. Sci. Rep. 5, 16080 (2015)

    Article  ADS  Google Scholar 

  10. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. EPL (Europhys. Lett.) 87(6), 60008 (2009)

    Article  ADS  Google Scholar 

  11. Wei, H., Qiao-Yan, W., Heng-Yue, J., Su-Juan, Q., Fei, G.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)

    Article  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Abulkasim, H., Hamad, S., Khalifa, A., El Bahnasy, K.: Quantum secret sharing with identity authentication based on Bell states. Int. J. Quantum Information 15(04), 1750023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Abulkasim, H., Hamad, S., El Bahnasy, K., Rida, S.Z.: Authenticated quantum secret sharing with quantum dialogue based on Bell states. Phys. Scr. 91(8), 085101 (2016)

    Article  ADS  Google Scholar 

  15. Abulkasim, H., Hamad, S., Elhadad, A.: Reply to Comment on ‘Authenticated quantum secret sharing with quantum dialogue based on Bell states’. Phys. Scr. 93(2), 027001 (2018)

    Article  ADS  Google Scholar 

  16. Joy, D., Behera, B.K., Panigrahi, P.K.: In principle demonstration of quantum secret sharing in the IBM quantum computer (2018). arXiv preprint arXiv:1807.03219

  17. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  18. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hung, S.-M., Hwang, S.-L., Hwang, T., Kao, S.-H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhou, M.-K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)

    Article  Google Scholar 

  21. Huang, W., Wen, Q., Liu, B., Gao, F., Sun, Y.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  22. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  23. Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Qin, S.-J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89(3), 032325 (2014)

    Article  ADS  Google Scholar 

  24. Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  25. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  26. Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)

    Article  ADS  Google Scholar 

  27. Wei, C.-Y., Cai, X.-Q., Liu, B., Wang, T., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  29. Tsai, C., Hwang, T.: On quantum key agreement protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009)

    Google Scholar 

  30. He, Y.-F., Ma, W.-P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14(01), 1650007 (2016)

    Article  MathSciNet  Google Scholar 

  31. Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. He, Y.-F., Ma, W.-P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Cai, B.-B., Guo, G.-D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56(4), 1039–1051 (2017)

    Article  Google Scholar 

  36. Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  37. Huang, W., Su, Q., Liu, B., He, Y.-H., Fan, F., Xu, B.-J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)

    Article  ADS  Google Scholar 

  38. Huang, W., Su, Q., Xu, B., Liu, B., Fan, F., Jia, H., Yang, Y.: Improved multiparty quantum key agreement in travelling mode. Sci. CHINA Phys. Mech. Astron. 59(12), 120311 (2016)

    Article  Google Scholar 

  39. Liu, B., Xiao, D., Jia, H.-Y., Liu, R.-Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process. 15(5), 2113–2124 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)

    Article  MathSciNet  Google Scholar 

  41. Luo, Q.-B., Yang, G.-W., She, K., Niu, W.-N., Wang, Y.-Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf. Process. 13(10), 2343–2352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15(5), 2101–2111 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Sun, Z., Yu, J., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15(1), 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. Sun, Z., Zhang, C., Wang, P., Yu, J., Zhang, Y., Long, D.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55(3), 1920–1929 (2016)

    Article  Google Scholar 

  46. Wang, P., Sun, Z., Sun, X.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16(7), 170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  47. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  49. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. Wang, L., Ma, W.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16(5), 130 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  51. Wang, T.-Y., Liu, Y.-Z., Wei, C.-Y., Cai, X.-Q., Ma, J.-F.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7(1), 2485 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussein Abulkasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abulkasim, H., Farouk, A., Alsuqaih, H. et al. Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf Process 17, 316 (2018). https://doi.org/10.1007/s11128-018-2091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2091-7

Keywords

Navigation