Skip to main content
Log in

Two-time correlation functions of a two-level system influenced by a composite environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To study the quantum regression theorem and the Leggett–Garg inequality, two-time correlation functions are calculated for a two-level system which is placed under the influence of a composite environment consisting of two subsystems. Two different configurations, I and II, are considered. In the configuration I, a two-level system of interest interacts with a thermal reservoir via another two-level system. In the configuration II, a relevant two-level system is influenced independently by another two-level system and a thermal reservoir. In both configurations, the thermal reservoir is assumed to have a sufficiently short correlation time. When an interacting nuclear-spin and electron-spin system is considered, the relevant system is a nuclear-spin (electron-spin) in the configuration I (II). It is shown that the quantum regression theorem for the relevant two-level system is always valid in the configuration II while it is not in the configuration I, regardless of whether the reduced time evolution is Markovian or not. Furthermore, it is found that the Leggett–Garg inequality can be violated in both configurations. The dependence of the violation on the parameters characterizing the open two-level system is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  2. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Rivas, A., Huelga, S.F.: Open Quantum Systems. Springer, Berlin (2012)

    Book  Google Scholar 

  4. Uchiyama, C., Aihara, M., Saeki, M., Miyashita, S.: Master equation approach to line shape in dissipative systems. Phys. Rev. E 80, 021128 (2009)

    Article  ADS  Google Scholar 

  5. Saeki, M., Uchiyama, C., Mori, T., Miyashita, S.: Comparison among various expressions of complex admittance for quantum systems in contact with a heat reservoir. Phys. Rev. E 81, 031131 (2010)

    Article  ADS  Google Scholar 

  6. Ban, M., Kitajima, S., Arimitsu, T., Shibata, F.: Linear response theory for open systems: quantum master equation approach. Phys. Rev. A 95, 022126 (2017)

    Article  ADS  Google Scholar 

  7. Wiseman, H.M.: Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. 65, 032111 (2002)

    Article  ADS  Google Scholar 

  8. Ban, M.: Weak measurement on a quantum system in contact with a thermal reservoir: projection operator method. Quantum Stud. 4, 339 (2017)

    Article  MathSciNet  Google Scholar 

  9. Barnett, S.M., Radmore, P.M.: Methods in Quantum Optics. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  10. Ali, M., Zhang, W.: Nonequilibrium transient dynamics of photon statistics. Phys. Rev. A 95, 033830 (2017)

    Article  ADS  Google Scholar 

  11. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)

    Book  Google Scholar 

  12. Breuer, H.P., Laine, E., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Laine, E., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  14. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Progress. Phys. 77, 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Breuer, H.P., Laine, E., Piilo, J., Vacchini, B.: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  16. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wolf, M.M., Cirac, J.I.: Dividing quantum channels. Commun. Math. Phys. 279, 147 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Vega, I., Alonso, D.: Non-Markovian reduced propagator, multiple-time correlation functions, and master equations with general initial conditions in the weak-coupling limit. Phys. Rev. A 73, 022102 (2006)

    Article  ADS  Google Scholar 

  19. Goan, H., Jian, C., Chen, P.: Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model. Phys. Rev. A 82, 012111 (2010)

    Article  ADS  Google Scholar 

  20. Goan, H., Chen, P., Jian, C.: Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem. J. Chem. Phys. 134, 124112 (2011)

    Article  ADS  Google Scholar 

  21. Leggett, A.J., Garg, A.: Quantum mechanics versus macroscopic realism. Phys. Rev. Lett. 54, 857 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Emary, C., Lambert, N., Nori, F.: Leggett–Garg inequalities. Rep. Progress. Phys. 77, 016001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ivanov, A., Breuer, H.P.: Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems. Phys. Rev. A 92, 032113 (2015)

    Article  ADS  Google Scholar 

  24. McCutcheon, D.P.S.: Optical signatures of non-Markovian behavior in open quantum systems. Phys. Rev. A 93, 022119 (2016)

    Article  ADS  Google Scholar 

  25. Ban, M.: Double-time correlation functions of two quantum operations in open systems. Phys. Rev. A 96, 042111 (2017); Erratum: Phys. Rev. A 97, 069901 (2018)

  26. Ban, M., Kitajima, S., Shibata, F.: Two-time correlation function of an open quantum system in contact with a Gaussian reservoir. Phys. Rev. A 97, 052101 (2018)

    Article  ADS  Google Scholar 

  27. Guarnieri, G., Smirne, A., Vacchini, B.: Quantum regression theorem and non-Markovianity of quantum dynamics. Phys. Rev. A 90, 022110 (2014)

    Article  ADS  Google Scholar 

  28. Ali, M., Lo, P., Tu, M.W., Zhang, W.: Non-Markovianity measure using two-time correlation functions. Phys. Rev. A 92, 062306 (2015)

    Article  ADS  Google Scholar 

  29. Arimitsu, T., Ban, M., Shibata, : A solvable model of microscopic frequency modulation I: conventional treatment of the damping operator. Physica 123A, 131 (1984)

    Article  ADS  Google Scholar 

  30. Apollaro, T.J.G., Lorenzo, S., Franco, C., Plastina, F., Paternostro, M.: Competition between memory-keeping and memory-erasing decoherence channels. Phys. Rev. A 90, 012310 (2014)

    Article  ADS  Google Scholar 

  31. Cammack, H.M., Kirton, P., Stace, T.M., Eastham, P.R., Keeling, J., Lovett, B.W.: Coherence protection in coupled quantum systems. Phys. Rev. A 97, 022103 (2018)

    Article  ADS  Google Scholar 

  32. Arimitsu, T., Shibata, F.: Theory of exchange dephasing I: general formulation. J. Phys. Soc. Jpn. 51, 1070 (1982)

    Article  ADS  Google Scholar 

  33. Bloch, F.: Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  34. Bloch, F.: Dynamical theory of nuclear induction II. Phys. Rev. 102, 104 (1956)

    Article  ADS  Google Scholar 

  35. King, C., Ruskai, M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192 (2001)

    Article  MathSciNet  Google Scholar 

  36. ban, M., Arimitsu, T.: A solvable model of microscopic frequency modulation II. Physica 129A, 455 (1985)

    Article  ADS  Google Scholar 

  37. Ban, M., Kitajima, S., Shibata, F.: Decoherence of entanglement in the Bloch channel. J. Phys. A 38, 4235 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Fiedenberger, A., Lutz, E.: Assessing the quantumness of a damped two-level system. Phys. Rev. A 95, 022101 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Appendices

Derivation of Eqs. (8)–(11)

In this appendix, we provide a brief derivation of Eqs. (8)–(11). In the interaction picture, the quantum master equation (2) becomes

$$\begin{aligned} \frac{\partial }{\partial t}\tilde{W}_{AB}(t)= & {} -ig[\sigma _{A}^{z}\sigma _{B}^{z},\tilde{W}_{AB}(t)] +\frac{1+w}{4T_{1}}([\sigma _{B}^{+},\tilde{W}_{AB}(t)\sigma _{B}^{-}] +[\sigma _{B}^{+}\tilde{W}_{AB}(t),\sigma _{B}^{-}])\nonumber \\&+\frac{1-w}{4T_{1}}([\sigma _{B}^{-},\tilde{W}_{AB}(t)\sigma _{B}^{+}] +[\sigma _{B}^{-}\tilde{W}_{AB}(t),\sigma _{B}^{+}])\nonumber \\&+\frac{1}{4}\left( \frac{1}{2T_{1}}-\frac{1}{T_{2}}\right) [\sigma _{B}^{z},[\sigma _{B}^{z},\tilde{W}_{AB}(t)]], \end{aligned}$$
(64)

where we set \(\tilde{W}_{AB}(t) =e^{i\omega _{A}t\sigma _{A}^{z}+i\omega _{B}t\sigma _{B}^{z}}W_{AB}(t) e^{-i\omega _{A}t\sigma _{A}^{z}+i\omega _{B}t\sigma _{B}^{z}}\). Then we obtain the equations of motion for the operators \(\tilde{W}_{A}^{jk}(t) ={}_{B}\langle j\vert \tilde{W}_{AB}(t)\vert k\rangle _{B}\) of the system A,

$$\begin{aligned} \frac{\partial }{\partial t}\tilde{W}_{A}^{ee}(t)= & {} -ig\sigma _{A}^{\times }\tilde{W}_{A}^{ee}(t) -\frac{1-w}{2T_{1}}\tilde{W}_{A}^{ee}(t) +\frac{1+w}{2T_{1}}\tilde{W}_{A}^{gg}(t), \end{aligned}$$
(65)
$$\begin{aligned} \frac{\partial }{\partial t}\tilde{W}_{A}^{gg}(t)= & {} ig\sigma _{A}^{\times }\tilde{W}_{A}^{gg}(t) -\frac{1+w}{2T_{1}}\tilde{W}_{A}^{gg}(t) +\frac{1-w}{2T_{1}}\tilde{W}_{A}^{ee}(t), \end{aligned}$$
(66)
$$\begin{aligned} \frac{\partial }{\partial t}\tilde{W}_{A}^{eg}= & {} \left( -ig\sigma _{A}^{\circ }-\frac{1}{T_{2}}\right) \tilde{W}_{A}^{eg}(t), \end{aligned}$$
(67)
$$\begin{aligned} \frac{\partial }{\partial t}\tilde{W}_{A}^{ge}= & {} \left( ig\sigma _{A}^{\circ }-\frac{1}{T_{2}}\right) \tilde{W}_{A}^{ge}(t). \end{aligned}$$
(68)

The latter two equations yield the solutions,

$$\begin{aligned} \tilde{W}_{A}^{eg}(t)=e^{-igt\sigma _{A}^{\circ }-t/T_{2}}W_{A}^{eg}(0), \quad \quad \quad \tilde{W}_{A}^{ge}(t)=e^{igt\sigma _{A}^{\circ }-t/T_{2}}W_{A}^{eg}(0). \end{aligned}$$
(69)

On the other hand, Eqs. (65) and (66) are rewritten into

$$\begin{aligned} \frac{\partial }{\partial t} \left( \begin{array}{c} \tilde{W}_{A}^{ee}(t) \\ \tilde{W}_{A}^{gg}(t) \end{array}\right) =\mathsf {M} \left( \begin{array}{c} \tilde{W}_{A}^{ee}(t) \\ \tilde{W}_{A}^{gg}(t) \end{array}\right) , \end{aligned}$$
(70)

with

$$\begin{aligned} \mathsf {M}=\left( \begin{array}{cc} \displaystyle {-ig\sigma _{A}^{\times }-\frac{1-w}{2T_{1}}} &{} \displaystyle {\frac{1+w}{2T_{1}}} \\ \displaystyle {\frac{1-w}{2T_{1}}} &{} \displaystyle {ig\sigma _{A}^{\times }-\frac{1+w}{2T_{1}}} \end{array}\right) . \end{aligned}$$
(71)

The matrix \(\mathsf {M}\) is diagonalized as

$$\begin{aligned} \mathsf {U}^{-1}\mathsf {M}\mathsf {U} =\left( \begin{array}{cc} \displaystyle {-\frac{1+a(\sigma _{A}^{\times })}{2T_{1}}} &{} 0 \\ 0 &{} \displaystyle {-\frac{1-a(\sigma _{A}^{\times })}{2T_{1}}} \end{array}\right) , \end{aligned}$$
(72)

with

$$\begin{aligned} \mathsf {U}= & {} \left( \begin{array}{cc} \displaystyle {\frac{1+w}{2T_{1}}} &{} \displaystyle {\frac{1+w}{2T_{1}}} \\ \displaystyle {ig\sigma _{A}^{\times } -\frac{w+a(\sigma _{A}^{\times })}{2T_{1}}} &{} \displaystyle {ig\sigma _{A}^{\times } -\frac{w-a(\sigma _{A}^{\times })}{2T_{1}}} \end{array}\right) , \end{aligned}$$
(73)
$$\begin{aligned} \mathsf {U}^{-1}= & {} \frac{2T_{1}^{2}}{(1+w)a(\sigma _{A}^{\times })} \left( \begin{array}{cc} \displaystyle {ig\sigma _{A}^{\times } -\frac{w-a(\sigma _{A}^{\times })}{2T_{1}}} &{} -\displaystyle {\frac{1+w}{2T_{1}}} \\ \displaystyle {-ig\sigma _{A}^{\times } +\frac{w+a(\sigma _{A}^{\times })}{2T_{1}}} &{} \displaystyle {\frac{1+w}{2T_{1}}} \end{array}\right) , \end{aligned}$$
(74)

where \(a(\sigma _{A}^{\times })\) is given by Eq. (12). Thus, the solution of Eq. (70) is given by

$$\begin{aligned} \left( \begin{array}{c} W_{A}^{ee}(t) \\ W_{A}^{gg}(t) \end{array}\right) =\left( \begin{array}{cc} V_{11}(t) &{} V_{12}(t) \\ V_{21}(t) &{} V_{22}(t) \end{array}\right) \left( \begin{array}{c} W_{A}^{ee}(0) \\ W_{A}^{gg}(0) \end{array}\right) , \end{aligned}$$
(75)

with

$$\begin{aligned} V_{11}(t)= & {} e^{-t/2T_{1}}\left[ \cosh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) +\frac{w-2igT_{1}\sigma _{A}^{\times }}{a(\sigma _{A}^{\times })} \sinh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) \right] , \end{aligned}$$
(76)
$$\begin{aligned} V_{12}(t)= & {} e^{-t/2T_{1}}\left( \frac{1+w}{a(\sigma _{A}^{\times })}\right) \sinh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) , \end{aligned}$$
(77)
$$\begin{aligned} V_{21}(t)= & {} e^{-t/2T_{1}}\left( \frac{1-w}{a(\sigma _{A}^{\times })}\right) \sinh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) , \end{aligned}$$
(78)
$$\begin{aligned} V_{22}(t)= & {} e^{-t/2T_{1}}\left[ \cosh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) -\frac{w-2igT_{1}\sigma _{A}^{\times }}{a(\sigma _{A}^{\times })} \sinh \left( \frac{a(\sigma _{A}^{\times })t}{2T_{1}}\right) \right] . \end{aligned}$$
(79)

Finally, we obtain Eqs. (8)–(11) in the Schrödinger picture.

A comment on the quantum regression theorem

Two-time correlation functions can be calculated by the formulas provided in Refs. [23,24,25,26]. In particular, using the formula derived in Ref. [26], we can express the two-time correlation function of quantum operations \(X_{1}\) and \(X_{2}\) of a relevant system under the influence of a thermal reservoir as

$$\begin{aligned} \langle X_{2}(t_{2})X_{1}(t_{1})\rangle= & {} \mathrm {Tr}[X_{2}\mathscr {V}(t_{2},t_{1})X_{1} \mathscr {V}(t_{1},t_{0}) W(t_{0})]\nonumber \\&+\Delta \langle X_{2}(t_{2})X_{1}(t_{1})\rangle \quad \quad (t_{2}>t_{1}>t_{0}), \end{aligned}$$
(80)

where \(W(t_{0})\) is an initial density operator of the relevant system and \(\Delta \langle X_{2}(t_{2})X_{1}(t_{1})\rangle \) is a correction term. The reduced density operator W(t) of the relevant quantum system is obtained by solving the time-local quantum master equation [1], \(\partial W(t)/\partial t=\mathscr {K}(t)W(t)\), the formal solution of which is given by \(W(t)=\mathscr {V}(t,t_{0})W(t_{0})\) with \(\mathscr {V}(t,t_{0})=\mathrm {T}\exp \left( \int _{t_{0}}^{t}ds\, \mathscr {K}(s)\right) \). If the second term on the right-hand side of Eq. (80) is negligible, the two-time correlation function can be determined by the solution of the quantum master equation, that is, the quantum channel \(\mathscr {V}(t)\). Up to the lowest order with respect to a system–reservoir interaction, the correction term \(\Delta \langle X_{2}(t_{2})X_{1}(t_{1})\rangle \) is given in the form of

$$\begin{aligned} \Delta \langle X_{2}(t_{2})X_{1}(t_{1})\rangle =\sum _{jk}\int _{t_{1}}^{t_{2}}d\tau _{2}\int _{t_{0}}^{t_{1}}d\tau _{1}\, \langle R_{j}(\tau _{2})R_{k}(\tau _{1})\rangle _{R} G_{jk}(t_{2},t_{1};\tau _{2},\tau _{1}), \end{aligned}$$
(81)

where \(\langle R_{j}(\tau _{2})R_{k}(\tau _{1})\rangle _{R}\) is a correlation function of the thermal reservoir and \(G_{jk}(t_{2},t_{1};\tau _{2},\tau _{1})\) is an appropriate function (please refer to Refs. [26] for details). Here, it is important to note that there is no overlap between the two integrations on the right-hand side of this equation. Hence if the thermal reservoir has a sufficiently short correlation time, the correction term \(\Delta \langle X_{2}(t_{2})X_{1}(t_{1})\rangle \) becomes negligibly small. In the same way, we can show that higher order correction terms are also negligible. In this case, \(\mathscr {K}(t)\) becomes independent of time and \(\mathscr {V}(t,t_{0})=\exp [(t-t_{0})\mathscr {K}]\) is obtained. For the system depicted in Fig. 1, we have the dynamical map \(\mathscr {V}(t,t_{0})=\exp [(t-t_{0})L_{AB}]=V_{AB}(t-t_{0})\) and \(W(0)=W_{A}(0)\otimes W_{B}(0)\). Thus, we can obtain Eqs. (29) and (30) from Eq. (80).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Two-time correlation functions of a two-level system influenced by a composite environment. Quantum Inf Process 17, 317 (2018). https://doi.org/10.1007/s11128-018-2093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2093-5

Keywords

Navigation