Skip to main content
Log in

Quantum-chaotic key distribution in optical networks: from secrecy to implementation with logistic map

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent paper, the quantum-chaotic key distribution (QCKD) in optical networks was introduced. In the present work, we extend the QCKD theory in two ways: Firstly, we propose to use the dependent Bernoulli trials to model the key generation in QCKD. Using this model, we show that the key generated by QCKD is far from presenting the observed correlations in chaos-based cryptography, and it is very close to the maximum secrecy offered by ideal quantum cryptography. Secondly, we show a new optical scheme for QCKD in which the optical chaotic scheme using optoelectronic oscillators is substituted by nonlinear discrete equations running in computers and the information carrier used is the phase instead of the light polarization. These changes make much easier its implementation with today technology while keeping the same security level guaranteed by chaotic and quantum rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennett, C.H., and Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, p. 175 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Namekata, N., Fuji, G., Inoue, S., Honjo, T., Takesue, H.: Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode. Appl. Phys. Lett. 91, 011112 (2007)

    Article  ADS  Google Scholar 

  4. Lo, H.-K., Zhao, Y.: Quantum cryptography. Comput. Complex. 6, 2453 (2012)

    Article  MathSciNet  Google Scholar 

  5. Gang, X., Chen, X.-B., Dou, Z., Yang, Y.-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015). https://doi.org/10.1007/s11128-015-1021-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Goedgebuer, J.-P., Levy, P., Larger, L., Chen, C.-C., Rhodes, W.T.: Optical communication with synchronized hyperchaos generated electrooptically. IEEE J. Quantum Electr. 38(9), 1178–1183 (2002)

    Article  ADS  Google Scholar 

  7. Annovazzi-Lodi, V., Donati, S., Scire, A.: Synchronization of chaotic lasers by optical feedback for cryptographic applications. IEEE J. Quantum Electron. 33(9), 1449–1454 (1997)

    Article  ADS  Google Scholar 

  8. Argyris, A., Syvrids, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., Garcia-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 437(17), 343–346 (2005)

    Article  ADS  Google Scholar 

  9. Van Wiggeren, G.D., Roy, R.: Communication with chaotic lasers. Science 279(20), 1198–1200 (1998)

    Article  ADS  Google Scholar 

  10. Akhavan, A., Samsudin, A., Akhshani, A.: Cryptanalysis of an improvement over an image encryption method based on total shuffling. Opt. Commun. 350, 77–82 (2015)

    Article  ADS  Google Scholar 

  11. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  12. Li, S., and Zheng, X.: Cryptanalysis of a chaotic image encryption method. In: IEEE International Symposium on Circuits and Systems. ISCAS 2002, vol. 2, pp. II–II. IEEE (2002)

  13. Solak, E., Çokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(05), 1405–1413 (2010)

    Article  MathSciNet  Google Scholar 

  14. Arroyo, D., Alvarez, G., and Fernandez, V.: On the inadequacy of the logistic map for cryptographic applications (2008). arXiv preprint arXiv:0805.4355

  15. Li, C.: Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Process. 118, 203–210 (2016)

    Article  Google Scholar 

  16. Kartalopoulos, S. V.: Chaotic quantum cryptography. In Fourth International Conference on Information Assurance and Security, 2008. ISIAS’08, pp. 338–342. IEEE (2008)

  17. Honjo, T., Uchida, A., Amano, K., Hirano, K., Someya, H., Okumura, H., Yoshimura, K., Davis, P., Tokura, Y.: Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers. Opt. Express 17(11), 9053–9061 (2009)

    Article  ADS  Google Scholar 

  18. Kartalopoulos, S.: Chaotic quantum cryptography: the ultimate for network security. In: Proceedings of the 2010 International Conference on Data Communication Networking (DCNET), pp. IS–9. IEEE (2010)

  19. Ramos, R.V., Souza, R.F.: Controlling a quantum communication system with synchronized nonlinear fiber ring resonator. Microw. Opt. Technol. Lett. 27(5), 302–304 (2000)

    Article  Google Scholar 

  20. Stojanovic, A.D., Ramos, R.V., Matavulj, P.S.: Authenticated B92 QKD protocol employing synchronized optical chaotic systems. Opt. Quantum Electr. 48, 285 (2016)

    Article  Google Scholar 

  21. de Oliveira, G.L., Ramos, R.V.: Quantum-chaotic cryptography. Quantum Inf. Process. 17, 40 (2018). https://doi.org/10.1007/s11128-017-1765-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kocarev, L.: Chaos-based cryptography: a brief overview. IEEE Circuits Syst. Mag. 1(3), 6–21 (2001)

    Article  MathSciNet  Google Scholar 

  23. Lai, X., Massey, J.L., and Murphy, S.: Markov ciphers and differential cryptanalysis. Workshop on the Theory and Application of Cryptographic Techniques, pp. 17–38. Springer, Berlin (1991)

  24. Edwards, A.W.F.: The meaning of binomial distribution. Nature 186(4730), 1074 (1960)

    Article  ADS  Google Scholar 

  25. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (2012)

    MATH  Google Scholar 

  26. Fataf, N.A.A., Mukherjee, S., Said, M.R.M., Rauf, U.F.A., Hina, A.D., Banerjee, S.: Synchronization between two discrete chaotic systems for secure communications. In: IEEE sixth international conference on communications and electronics (ICCE) (2016). https://doi.org/10.1109/cce.2016.7562682

  27. Nishioka, T., Ishizuka, H., Hasegawa, T., Abe, J.: Circular type quantum key distribution. J. IEEE Photonics Technol. Lett. 14(4), 576–578 (2002)

    Article  ADS  Google Scholar 

  28. Qi, B., Huang, L.-L., Lo, H.-K., Qian, L.: Polarization insensitive phase modulator for quantum cryptosystems. Opt. Express 14, 4264–4269 (2006)

    Article  ADS  Google Scholar 

  29. Cavalcanti, M.D.S., Mendonça, F.A., Ramos, R.V.: Spectral method for characterization of avalanche photodiode working as single-photon detector. Opt. Lett. 36(17), 3446 (2011)

    Article  ADS  Google Scholar 

  30. Pinheiro, P.V.P., Ramos, R.V.: Two-layer quantum key distribution. Quantum Inf. Process. 14(6), 2111 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and CNPq via Grant No. 307062/2014-7. Also, this work was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, J.C., Damasceno, R.L.C., de Oliveira, G.L. et al. Quantum-chaotic key distribution in optical networks: from secrecy to implementation with logistic map. Quantum Inf Process 17, 329 (2018). https://doi.org/10.1007/s11128-018-2097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2097-1

Keywords

Navigation