Skip to main content
Log in

Quantum network dialogue protocol based on continuous-variable GHZ states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum dialogue network, as a considerable topic, promotes high efficiency and instantaneousness in quantum communication through simultaneously deducing the secret information over the quantum channel. A new quantum network dialogue protocol is proposed based on continuous-variable GHZ states. In the protocol, the quantum dialogue could be conducted simultaneously among multiple legitimate communication parties. The security of the proposed protocol is ensured by the correlation of continuous-variable GHZ entangled states and the decoy states inserted into the GHZ states in the randomly selected time slots. In addition, the proposed quantum network dialogue protocol with continuous-variable quantum states improves the communication efficiency with the perfect utilization of quantum bits greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beige, A., Englert, B.G., Kurtsiefer, C., et al.: Secure communication with single-photon two-qubit states. J. Phys. A-Math. Gen. 35(28), 407–413 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003)

    Article  ADS  Google Scholar 

  3. Rajna, G.: Quantum communication. Nat. Photonics 55(1), 298–303 (2016)

    Google Scholar 

  4. Tomamichel, M., Wilde, M.M., Winter, A.: Strong converse rates for quantum communication. IEEE Trans. Inf. Theory 63(1), 715–727 (2016)

    Article  MathSciNet  Google Scholar 

  5. Sharma, V., Thapliyal, K., Pathak, A., et al.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Deng, F.G., Gui, L.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  7. Hu, J.Y., Yu, B., Gui, L.L., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2015)

    Article  Google Scholar 

  8. Patwardhan, S., Moulick, S.R., Panigrahi, P.K.: Efficient controlled quantum secure direct communication protocols. Int. J. Theor. Phys. 55(7), 3280–3288 (2016)

    Article  MathSciNet  Google Scholar 

  9. Amerimehr, A., Dehkordi, M.H.: Impersonation attack on a quantum secure direct communication and authentication protocol with improvement. Appl. Phys. B 124(3), 44 (2018)

    Article  ADS  Google Scholar 

  10. Chang, C.H., Yang, C.W., Hzu, G.R., et al.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15(7), 2971–2991 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gong, L.H., Li, J.F., Zhou, N.R.: Multiparty quantum dialogue protocol based on continuous variable squeezed states. In: IEEE, International Conference on Nanotechnology, pp. 36–39 (2017)

  12. Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16(1), 4 (2017)

    Article  ADS  Google Scholar 

  13. Zhou, N.R., Cheng, H.L., Liao, Q.H.: Three-party stop-wait quantum communication protocol for data link layer based on GHZ state. Int. J. Theor. Phys. 52(3), 811–819 (2013)

    Article  Google Scholar 

  14. Yang, C.P., Su, Q.P., Nori, F.: Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities. New J. Phys. 15(11), 231–239 (2013)

    Google Scholar 

  15. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China 51(5), 559–566 (2008)

    Google Scholar 

  16. Song, T.T., Wen, Q.Y., Gao, F., et al.: Participant attack and improvement to multiparty quantum secret sharing based on GHZ states. Int. J. Theor. Phys. 52(1), 293–301 (2013)

    Article  Google Scholar 

  17. Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3204–3211 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhou, N.R., Hua, T.X., Wu, G.T., et al.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53(11), 3829–3837 (2014)

    Article  Google Scholar 

  19. Wang, H., Zhang, Y.Q., Liu, X.F., et al.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15(6), 2593–2603 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zhang, M.H., Li, H.F., Xia, Z.Q., et al.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)

    Article  ADS  Google Scholar 

  21. Kao, S.H., Yang, C.W., Hwang, T.: Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise. Quantum Inf. Process. 15(11), 4711–4727 (2016)

    Article  ADS  Google Scholar 

  22. He, Y.F., Ma, W.P.: Three-party quantum secure direct communication against collective noise. Quantum Inf. Process. 16(10), 252 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sharma, V., Thapliyal, K., Pathak, A., et al.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15(11), 4681–4710 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, R.J., Li, D.F., Qin, Z.G.: An Immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)

    Article  Google Scholar 

  25. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. Alizo, M.T.D., Bari, I., Daneshgaran, F., et al.: Capacity-approaching channel codes for discrete variable quantum key distribution (QKD) applications. In: Wireless Networks and Security, pp. 423–456. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  27. Lasota, M., Filip, R., Usenko, V.C.: Robustness of quantum key distribution with discrete and continuous variables to channel noise. Phys. Rev. A 95(6), 062312 (2016)

    Article  ADS  Google Scholar 

  28. Kato, K., Osaki, M., Hirota, O.: Derivation of classical capacity of a quantum channel for a discrete information source. Phys. Lett. A 251(3), 157–163 (1999)

    Article  ADS  Google Scholar 

  29. Wu, Y., Zhou, J., Gong, X., et al.: Continuous-variable measurement-device-independent multipartite quantum communication. Phys. Rev. A 93(2), 022325 (2016)

    Article  ADS  Google Scholar 

  30. Zhou, J., Guo, Y.: Continuous-variable measurement-device-independent multipartite quantum communication using coherent states. J. Phys. Soc. Jpn. 86(2), 024003 (2017)

    Article  ADS  Google Scholar 

  31. Su, X.L., Jia, X.J., Peng, K.C.: Quantum information processing with continuous variables based on quantum state of optical field. Prog. Phys. 36(4), 101–117 (2016)

    Google Scholar 

  32. Huang, D., Huang, P., Lin, D., et al.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  33. Song, H.C., Gong, L.H., Zhou, N.R.: Continuous-variable quantum deterministic key distribution protocol based on quantum teleportation. Acta Phys. Sin. 61(15), 415–418 (2012)

    Google Scholar 

  34. Yu, Z.B., Gong, L.H., Zhu, Q.B., et al.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55(7), 3147–3155 (2016)

    Article  MathSciNet  Google Scholar 

  35. Ma, Y.Y., Feng, J.X., Wan, Z.J., et al.: Continuous variable quantum entanglement at 1.34 μm. Acta Phys. Sin. 66(26), 244205 (2017)

    Google Scholar 

  36. Wan, Z.J., Feng, J.X., Cheng, J., et al.: Experimental investigation of transmission characteristics of continuous variable entangled state over optical fibers. Acta Phys. Sin. 67(2), 024203 (2018)

    Google Scholar 

  37. Luo, M.X.: Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120(14), 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Van, L.P., Braunstein, S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84(15), 3482–3485 (2000)

    Article  ADS  Google Scholar 

  39. Johannesson, R., Zigangirov, K.S.: Low-Density Parity-Check Codes, p. 550. Wiley, Hoboken (2010)

    Google Scholar 

  40. Berrou, C., Glavieux, A.: Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. Commun. 44(10), 1261–1271 (1996)

    Article  Google Scholar 

  41. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61561033 and 61462061), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011) and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Tian, C., Li, J. et al. Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf Process 17, 331 (2018). https://doi.org/10.1007/s11128-018-2103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2103-7

Keywords

Navigation