Skip to main content
Log in

Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum representation model for multiple images is firstly proposed, which could save more storage space than the existing quantum image representation models and allow quantum hardware to encrypt an arbitrary number of images simultaneously. Moreover, the definition and the quantum circuit of quantum 3D Arnold transform are given based on the proposed quantum representation model for multiple images. Furthermore, a novel quantum multi-image encryption scheme is devised by combining quantum 3D Arnold transform and quantum XOR operations with scaled Zhongtang chaotic system. Theoretically, the proposed quantum image encryption scheme could encrypt many images simultaneously. Numerical simulations and theoretical analyses demonstrate that the proposed quantum multi-image encryption scheme outperforms both its classical counterparts and the existing typical quantum image encryption algorithms in terms of security, robustness, encryption capacity and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  4. Venegas-Andraca, S.E., Bose, S.: Quantum computation and image processing: new trends in artificial intelligence. In: Proceedings of the International Conference on Artificial Intelligence IJCAI-03, pp. 1563–1564 (2003)

  5. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  6. Fijany, A., Williams, C.P.: Quantum wavelet transform: fast algorithm and complete circuits. arXiv:quantph/9809004 (1998)

  7. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium Theory of Computing (STOC 1996), pp. 212–219. ACM, New York (1996)

  8. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos, CA (1994)

  9. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)

  10. Latorre, J.I.: Image compression and entanglement. arXiv:quantph/0510031 (2005)

  11. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  12. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  13. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)

    Article  Google Scholar 

  14. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Li, H.S., Qingxin, Z., Lan, S., Shen, C.Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhou, R., Sun, Y., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Caraiman, S., Manta, V.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Tong, X.J., Zhang, M., Wang, Z., Ma, J.: A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4), 2333–2356 (2016)

    Article  Google Scholar 

  24. Li, C., Luo, G., Qin, K., Li, C.: An image encryption scheme based on chaotic tent map. Nonlinear Dyn. 87(1), 127–133 (2017)

    Article  Google Scholar 

  25. Zhu, H., Zhang, X., Yu, H., Zhao, C., Zhu, Z.: An image encryption algorithm based on compound homogeneous hyper-chaotic system. Nonlinear Dyn. 89(1), 61–79 (2017)

    Article  Google Scholar 

  26. Khan, M.: A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 82(1–2), 527–533 (2015)

    Article  MathSciNet  Google Scholar 

  27. Li, C., Xie, T., Liu, Q., Cheng, G.: Cryptanalyzing image encryption using chaotic logistic map. Nonlinear Dyn. 78(2), 1545–1551 (2014)

    Article  Google Scholar 

  28. Li, C., Liu, Y., Xie, T., Chen, M.Z.: Breaking a novel image encryption scheme based on improved hyperchaotic sequences. Nonlinear Dyn. 73(3), 2083–2089 (2013)

    Article  MathSciNet  Google Scholar 

  29. Solak, E., Çokal, C.: Algebraic break of a cryptosystem based on discretized two-dimensional chaotic maps. Phys. Lett. A 373(15), 1352–1356 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Solak, E., Çokal, C.: Algebraic break of image ciphers based on discretized chaotic map lattices. Inf. Sci. 181(1), 227–233 (2011)

    Article  MathSciNet  Google Scholar 

  31. Özkaynak, F., Yavuz, S.: Analysis and improvement of a novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Nonlinear Dyn. 78(2), 1311–1320 (2014)

    Article  Google Scholar 

  32. Akhshani, A., Akhavan, A., Lim, S.C., Hassan, Z.: An image encryption scheme based on quantum logistic map. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4653–4661 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. Seyedzadeh, S., Norouzi, B., Mosavi, M., Mirzakuchaki, S.: A novel color image encryption algorithm based on spatial permutation and quantum chaotic map. Nonlinear Dyn. 81(1–2), 511–529 (2015)

    Article  MathSciNet  Google Scholar 

  34. Abd El-Latif, A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A new approach to chaotic image encryption based on quantum chaotic systems, exploiting color spaces. Signal Process. 93(11), 2986–3000 (2013)

    Article  Google Scholar 

  35. Wang, H., Wang, J., Geng, Y.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 8, 1–21 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15, 2701–2724 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Yang, Y., Tian, J., Lei, H., Zhou, Y., Shi, W.: Novel quantum image encryption using one-dimensional quantum cellular automata. Inform. Sci. 345, 257–270 (2016)

    Article  Google Scholar 

  39. Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)

    Article  ADS  Google Scholar 

  40. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  41. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  42. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Zhou, N.R., Chen, W.W., Yan, X.Y., Wang, Y.Q.: Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system. Quantum Inf. Process. 17, 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  44. Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(7), 1961–1982 (2017)

    Article  MathSciNet  Google Scholar 

  45. Zhou, N.R., Hu, Y.Q., Gong, L.H., Li, G.Y.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 164–186 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. Situ, G., Zhang, J.: Multiple-image encryption by wavelength multiplexing. Opt. Lett. 30(11), 1306–1308 (2005)

    Article  ADS  Google Scholar 

  47. Deepan, B., Quan, C., Wang, Y., Tay, C.: Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique. Appl. Opt. 53(20), 4539–4547 (2014)

    Article  ADS  Google Scholar 

  48. Wang, Q., Guo, Q., Zhou, J.Y.: Double image encryption based on linear blend operation and random phase encoding in fractional Fourier domain. Opt. Commun. 285(21–22), 4317–4323 (2012)

    Article  ADS  Google Scholar 

  49. Pan, S.M., Wen, R.H., Zhou, Z.H., Zhou, N.R.: Optical multi-image encryption scheme based on discrete cosine transform and nonlinear fractional Mellin transform. Multimed. Tools Appl. 76(2), 2933–2953 (2017)

    Article  Google Scholar 

  50. Hu, Y.Q., Xie, X.W., Liu, X.B., Zhou, N.R.: Quantum multi-image encryption based on iteration Arnold transform with parameters and image correlation decomposition. Int. J. Theor. Phys. 56(7), 2192–2205 (2017)

    Article  MathSciNet  Google Scholar 

  51. Çavuşoğlu, Ü., Kaçar, S., Zengin, A., Pehlivan, I.: A novel hybrid encryption algorithm based on chaos and S-AES algorithm. Nonlinear Dyn. 92(4), 1745–1759 (2018)

    Article  Google Scholar 

  52. Lian, S.G., Mao, Y.B., Wang, Z.Q.: 3D extensions of some 2D chaotic maps and their usage in data encryption. In: International Conference on Control and Automation, 2003. ICCA’03. Proceedings, pp. 819–823. IEEE (2003)

  53. Zhou, N.R., Jiang, H., Gong, L.H., Xie, X.W.: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging. Opt. Lasers Eng. 110, 72–79 (2018)

    Article  Google Scholar 

  54. Chen, J., Zhu, Z., Fu, C., Yu, H.: A fast image encryption scheme with a novel pixel swapping-based confusion approach. Nonlinear Dyn. 77(4), 1191–1207 (2014)

    Article  Google Scholar 

  55. Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption. Inf. Sci. 223, 297–316 (2013)

    Article  MathSciNet  Google Scholar 

  56. Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061 and 61262084), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social Security of Jiangxi Province, the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanrun Zhou, Haoran Liang or Guangyong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, N., Yan, X., Liang, H. et al. Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf Process 17, 338 (2018). https://doi.org/10.1007/s11128-018-2104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2104-6

Keywords

Navigation