Skip to main content
Log in

One-step entanglements generation on distant superconducting resonators in the dispersive regime

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scalable quantum-bus-based device for generating the entanglement on photons in distant superconducting resonators (SRs). The device is composed of some one-dimensional (1D) SRs \(r_j\) coupled to the quantum bus (another common resonator R) in its different positions assisted by superconducting quantum interferometer devices which are used to tune the coupling strengths between \(r_j\) and R. By using the technique for catching and releasing a photon state in a 1D SR, it can work as an entanglement generator or a node in quantum communication. To demonstrate the performance of this device, we propose a one-step scheme to generate high-fidelity Bell state on photons in two distant SRs. It works in the dispersive regime of \(r_j\) and R, which enables us to extend it to generate high-fidelity multi-Bell states on different resonator pairs simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  2. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  6. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  7. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  8. Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)

    Article  Google Scholar 

  9. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    Article  ADS  Google Scholar 

  11. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  12. Zhou, L., Dong, H., Liu, Y.X., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    Article  ADS  Google Scholar 

  13. Zhou, L., Yang, X., Liu, Y.X., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    Article  ADS  Google Scholar 

  14. Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)

    Article  ADS  Google Scholar 

  15. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  16. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  17. Li, X.Q., Wu, Y.W., Steel, D.C., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2003)

    Article  ADS  Google Scholar 

  18. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  19. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  20. Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  21. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  22. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express. 21, 17671 (2013)

    Article  ADS  Google Scholar 

  23. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  24. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  25. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444 (2016)

    Article  ADS  Google Scholar 

  26. Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities. Phys. Rev. A 94, 062310 (2016)

    Article  ADS  Google Scholar 

  27. Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25, 16931 (2017)

    Article  ADS  Google Scholar 

  28. Martinis, J.M.: Superconducting phase qubits. Quantum Inf. Proc. 8, 81 (2009)

    Article  Google Scholar 

  29. Ng, H.T., Nori, F.: Quantum phase measurement and Gauss sum factorization of large integers in a superconducting circuit. Phys. Rev. A 82, 042317 (2010)

    Article  ADS  Google Scholar 

  30. Tanamoto, T., Liu, Y.X., Fujita, S., Hu, X.D., Nori, F.: Producing cluster states in charge qubits and flux qubits. Phys. Rev. Lett. 97, 230501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. You, J.Q., Wang, X.B., Tanamoto, T., Nori, F.: Efficient one-step generation of large cluster states with solid-state circuits. Phys. Rev. A 75, 052319 (2007)

    Article  ADS  Google Scholar 

  32. Tanamoto, T., Liu, Y.X., Hu, X.D., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102, 100501 (2009)

    Article  ADS  Google Scholar 

  33. Wang, H.F., Yang, C.P., Nori, F.: Robust and scalable optical one-way quantum computation. Phys. Rev. A 81, 052332 (2010)

    Article  ADS  Google Scholar 

  34. Wei, L.F., Liu, Y.X., Storcz, M.J., Nori, F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)

    Article  ADS  Google Scholar 

  35. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    Article  ADS  Google Scholar 

  36. Song, X., Zhang, K.H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    Article  ADS  Google Scholar 

  37. Cai, K., Wang, R.X., Yin, Z.Q., Long, G.L.: Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator. Sci. China Phys. Mech. Astron. 60, 070311 (2017)

    Article  ADS  Google Scholar 

  38. Chirolli, L., Burkard, G., Kumar, S., Divincenzo, D.P.: Superconducting resonators as beam splitters for linear-optics quantum computation. Phys. Rev. Lett. 104, 230502 (2010)

    Article  ADS  Google Scholar 

  39. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  40. Adhikari, P., Hafezi, M., Taylor, J.M.: Nonlinear optics quantum computing with circuit QED. Phys. Rev. Lett. 110, 060503 (2013)

    Article  ADS  Google Scholar 

  41. Neumeier, L., Leib, M., Hartmann, M.J.: Single-photon transistor in circuit quantum electrodynamics. Phys. Rev. Lett. 111, 063601 (2013)

    Article  ADS  Google Scholar 

  42. Shen, J.T., Fan, S.H.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)

    Article  ADS  Google Scholar 

  43. Astafiev, O., Zagoskin, A.M., Abdumalikov Jr., A.A., Pashkin, Y.A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single artificial atom. Science 327, 840 (2010)

    Article  ADS  Google Scholar 

  44. Lalumière, K., Sanders, B.C., van Loo, A.F., Fedorov, A., Wallraff, A., Blais, A.: Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013)

    Article  ADS  Google Scholar 

  45. Yin, Y., Chen, Y., Sank, D., O’Malley, P.J.J., White, T.C., Barends, R., Kelly, J., Lucero, E., Mariantoni, M., Megrant, A., Neill, C., Vainsencher, A., Wenner, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Catch and release of microwave photon states. Phys. Rev. Lett. 110, 107001 (2013)

    Article  ADS  Google Scholar 

  46. Bajjani, E.Z., Nguyen, F., Lee, M., Vale, L.R., Simmonds, R.W., Aumentado, J.: Quantum superposition of a single microwave photon in two different ‘colour’ states. Nat. Phys. 7, 599 (2011)

    Article  Google Scholar 

  47. Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Weides, M., Wenner, J., Yamamoto, T., Yin, Y., Zhao, J., Martinis, J.M., Cleland, A.N.: Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011)

    Article  ADS  Google Scholar 

  48. Du, L.H., Hu, Y., Zhou, Z.W., Guo, G.C., Zhou, X.X.: Integrated photonic qubit quantum computing on a superconducting chip. New J. Phys. 12, 063015 (2010)

    Article  ADS  Google Scholar 

  49. Xiong, S.J., Sun, Z., Liu, J.M., Liu, T., Yang, C.P.: Efficient scheme for generation of photonic NOON states in circuit QED. Opt. Lett. 40, 2221 (2015)

    Article  ADS  Google Scholar 

  50. Hua, M., Tao, M.J., Deng, F.G.: Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics. Phys. Rev. A 90, 012328 (2014)

    Article  ADS  Google Scholar 

  51. Hu, Y., Tian, L.: Deterministic generation of entangled photons in superconducting resonator arrays. Phys. Rev. Lett. 106, 257002 (2011)

    Article  ADS  Google Scholar 

  52. Strauch, F.W.: All-resonant control of superconducting resonators. Phys. Rev. Lett. 109, 210501 (2012)

    Article  ADS  Google Scholar 

  53. Yang, C.P., Su, Q.P., Han, S.Y.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  54. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  Google Scholar 

  55. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  Google Scholar 

  56. Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett. 92, 203501 (2008)

    Article  ADS  Google Scholar 

  57. Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R., García-Ripoll, J.J.: Tunable coupling engineering between superconducting resonators: from sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013)

    Article  ADS  Google Scholar 

  58. Srinivasan, S.J., Hoffman, A.J., Gambetta, J.M., Houck, A.A.: Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. Phys. Rev. Lett. 106, 083601 (2011)

    Article  ADS  Google Scholar 

  59. Megrant, A., Neill, C., Barends, R., Chiaro, B., Chen, Y., Feigl, L., Kelly, J., Lucero, E., Mariantoni, M., O’Malley, P.J.J., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Yin, Y., Zhao, J., Palmstrøm, C.J., Martinis, J.M., Cleland, A.N.: Planar superconducting resonators with internal quality factors above one million. Appl. Phys. Lett. 100, 113510 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11704281, 11647042, 11674033, 11474026, 11604012, the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01, and the China Postdoctoral Science Foundation under Grant No. 2018M631438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, M., Tao, MJ., Alzahrani, F. et al. One-step entanglements generation on distant superconducting resonators in the dispersive regime. Quantum Inf Process 17, 337 (2018). https://doi.org/10.1007/s11128-018-2106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2106-4

Keywords

Navigation