Skip to main content
Log in

Measurement-based quantum correlation in mixed-state quantum metrology

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement is crucial for realizing quantum advantages in metrology. However, entanglement has been outcast by discord in order to capture the worst-case sensitivity in quantum metrology to estimate an unknown parameter. In contrast to traditional measures—namely entanglement and discord—there exist noncommutativity-based quantum correlation measures induced by local von Neumann measurements. Such correlations are more comprehensive than entanglement and discord in quantum information processing. In this paper, we investigate the metrological resourcefulness of measurement-based quantum correlations (MbQCs). We provide a lower bound on the minimum precision of the estimation in terms of the MbQC. We show that the MbQC is more resourceful in quantum metrology than entanglement and super quantum discord. For any non-product state, the MbQC gives a metrological insight into the sensitivity of a mixed state toward perturbation caused by a local von Neumann measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Girolami, D.: Interpreting quantum discord in quantum metrology. J. Phys. Conf. Ser. 626(1), 012042 (2015)

    Article  Google Scholar 

  2. Qaisar, S., ur Rehman, J., Jeong, Y., Shin, H.: Practical deterministic secure quantum communication in a Lossy channel. Prog. Theor. Exp. Phys. 2017(4), 041A01 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070–1091 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

  5. Majtey, A.P., Bussandri, D.G., Osán, T.M., Lamberti, P.W., Valdés-Hernández, A.: Problem of quantifying quantum correlations with non-commutative discord. Quantum Inf. Process. 16(9), 226 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  7. Girolami, D., Souza, A.M., Giovannetti, V., Tufarelli, T., Filgueiras, J.G., Sarthour, R.S., Soares-Pinto, D.O., Oliveira, I.S., Adesso, G.: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  8. Farace, A., Pasquale, A.D., Rigovacca, L., Giovannetti, V.: Discriminating strength: a bonafide measure of non-classical correlations. New J. Phys. 16(7), 073010 (2014)

    Article  ADS  Google Scholar 

  9. Modi, K., Cable, H., Williamson, M., Vedral, V.: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)

    Google Scholar 

  10. Bromley, T.R., Silva, I.A., Oncebay-Segura, C.O., Soares-Pinto, D.O., deAzevedo, E.R., Tufarelli, T., Adesso, G.: There is more to quantum interferometry than entanglement. Phys. Rev. A 95, 052313 (2017)

    Article  ADS  Google Scholar 

  11. Luo, S.: Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53(3), 243–251 (2000)

    Article  MathSciNet  Google Scholar 

  12. Ma, J., Xiao Huang, Y., Wang, X., Sun, C.P.: Quantum Fisher information of the Greenberger–Horne–Zeilinger state in decoherence channels. Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  13. Augusiak, R., Kolodynski, J., Streltsov, A., Bera, M.N., Acín, A., Lewenstein, M.: Asymptotic role of entanglement in quantum metrology. Phys. Rev. A 94, 012339 (2016)

    Article  ADS  Google Scholar 

  14. Bogaert, P., Girolami, D.: Metrological measures of non-classical correlations. In: Lectures on General Quantum Correlations and Their Applications, pp. 159–179 (2017)

    Google Scholar 

  15. Hadfi, H.E., Taleb, Y.A., Daoud, M.: Quantum interferometric power and the role of nonclassical correlations in quantum metrology for a special class of two-qubit states. Int. J. Mod. Phys. B 31(08), 1750052 (2017)

    Article  Google Scholar 

  16. Erol, V., Ozaydin, F., Altintasi, A.A.: Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems. Sci. Rep. 4, 5422 (2014)

    Article  ADS  Google Scholar 

  17. Ozaydin, F.: Quantum Fisher information of a 3 \({\times }\) 3 bound entangled state and its relation with geometric discord. Int. J. Theor. Phys. 54(9), 3304–3310 (2015)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Li, X., Li, B., Fan, H.: Quantum correlation induced by the average distance between the reduced states. Int. J. Theor. Phys. 54(6), 2022–2030 (2015)

    Article  Google Scholar 

  19. Pires, D.P., Céleri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  20. Li, T., Ze-Qian, C.: Concurrence and Wigner–Yanase skew information. Chin. Phys. Lett. 23(3), 542 (2006)

    Article  ADS  Google Scholar 

  21. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  22. Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Measurement-induced nonlocality based on Wigner–Yanase skew information. EPL 114(1), 10007 (2016)

    Article  ADS  Google Scholar 

  23. Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268(3), 158–160 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Spehner, D., Illuminati, F., Orszag, M., Roga, W.: Geometric measures of quantum correlations with Bures and Hellinger distances. In: Lectures on General Quantum Correlations and Their Applications, pp. 105–157 (2017)

    MATH  Google Scholar 

  25. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  26. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49(47), 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, B., Chen, L., Fan, H.: Non-zero total correlation means non-zero quantum correlation. Phys. Lett. A 378(18), 1249–1253 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Zhang, L., Datta, A., Walmsley, I.A.: Precision metrology using weak measurements. Phys. Rev. Lett. 114, 210801 (2015)

    Article  ADS  Google Scholar 

  29. Spehner, D.: Quantum correlations and distinguishability of quantum states. J. Math. Phys. 55(7), 075211 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Peters, N.A., Wei, T.C., Kwiat, P.G.: Mixed-state sensitivity of several quantum-information benchmarks. Phys. Rev. A 70, 052309 (2004)

    Article  ADS  Google Scholar 

  31. Rajagopal, A.K., Nayak, A.S., Devi, A.R.U.: From the quantum relative Tsallis entropy to its conditional form: separability criterion beyond local and global spectra. Phys. Rev. A 89, 012331 (2014)

    Article  ADS  Google Scholar 

  32. Guo, Y., Wu, S.: Quantum correlation exists in any non-product state. Sci. Rep. 4, 7179 (2014)

    Article  ADS  Google Scholar 

  33. Boixo, S., Datta, A., Flammia, S.T., Shaji, A., Bagan, E., Caves, C.M.: Quantum-limited metrology with product states. Phys. Rev. A 77, 012317 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2016R1A2B2014462) and by the Basic Science Research Program through the NRF funded by the Ministry of Education (No. 2018R1D1A1B07050584), and ICT R&D program of MSIP/IITP [R0190-15-2030, reliable cryptosystem standards and core technology development for secure quantum key distribution network].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youngmin Jeong or Hyundong Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, U., Jeong, Y. & Shin, H. Measurement-based quantum correlation in mixed-state quantum metrology. Quantum Inf Process 17, 343 (2018). https://doi.org/10.1007/s11128-018-2110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2110-8

Keywords

Navigation