Abstract
Quantum digital signature (QDS) is based on the laws of quantum physics, and can provide unconditional security for signing messages between remote multi-party users. To date, different QDS protocols have been proposed and corresponding security analysis has been done. Just most security analyses are directed against signing single-bit messages, and the security cannot be ensured when signing multi-bit messages if one simply puts blocks together. Recently, T.Y. Wang et al. analyzed the security under this situation and gave a solution for eliminating potential eavesdropping attacks. However, its efficiency is relatively low since they need to consume more than 2n-bit signatures to sign a classical n-bit message. In this paper, we propose a high efficient approach for signing multi-bit messages. As a result, the efficiency can be improved with 36.92% when signing a 128-bit message compared with using T.Y. Wang et al.’s method. And the improvement is even larger when signing longer messages.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)
Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)
Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93(3), 032316 (2016)
Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)
Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94(2), 022328 (2016)
Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quantum Inf. Comput. 6(0435), 435–464 (2016)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)
Donaldson, R.J., Collins, R.J., Kleczkowska, K., et al.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)
Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41(21), 4883–4886 (2016)
Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95(3), 032334 (2017)
Yin, H.L., Wang, W.L., Tang, Y.L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95(4), 042338 (2017)
Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1098 (2017)
Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7(1), 3235 (2017)
Wang, C., Song, X.T., Yin, Z.Q., et al.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115(16), 160502 (2015)
Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)
Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, ZFu: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4(9), 1016–1023 (2017)
Zhang, C.H., Zhou, X.Y., Ding, H.J., Zhang, C.M., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of passive decoy-state quantum digital signatures over 200 km. Phys. Rev. Appl. 10, 034033 (2018). https://doi.org/10.1103/PhysRevApplied.10.034033
Wang, Q., Chen, W., Xavier, G., et al.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 110(9), 090501 (2008)
Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4(4), 4612 (2014)
Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)
Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 19 (2017)
Acknowledgements
The authors thank Xing-Yu Zhou, Kang Liu, Jia-Ming Chen and Jian-Rong Zhu for enlightened discussions.
Funding
We gratefully acknowledge the financial support from the National Key R&D Program of China through Grant Nos. 2018YFA0306400, 2017YFA0304100, the National Natural Science Foundation of China through Grants Nos. 61475197, 61590932, 11774180, 61705110, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 17KJB140016, the Natural Science Foundation of Jiangsu Province through Grant No. BK20170902, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province through Grant No. 46002CX17792.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, H., An, XB., Zhang, CH. et al. High-efficiency quantum digital signature scheme for signing long messages. Quantum Inf Process 18, 3 (2019). https://doi.org/10.1007/s11128-018-2116-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2116-2