Abstract
We propose a practical scheme to implement universal superadiabatic geometric quantum gates in decoherence-free subspaces in the trapped-ions system. The logical qubit is only encoded by two neighboring physical qubits, which is the minimal resource for the decoherence-free subspace encoding. Different from the nonadiabatic control in decoherence-free subspace (Liang et al. in Phys Rev A 89:062312, 2014), a new Hamiltonian to implement universal effective interaction between logical qubits is proposed in the scheme. The proposed gates are numerically demonstrated to be robust against both systematic errors and collective dephasing noises, which combine the advantages of superadiabatic geometric quantum control and decoherence-free subspace. Since the Hamiltonian we use relies solely on two-body interactions, our scheme would be promising to be realized experimentally in trapped-ions systems.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)
Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)
De Chiara, G., Palma, G.M.: Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003)
Solinas, P., Zanadi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)
Solinas, P., Sassetti, M., Truini, P., Zanghì, N.: On the stability of quantum holonomic gates. New J. Phys. 14, 093006 (2012)
Zhu, S.L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)
Liang, Z.T., Yue, X.X., Lv, Q.X., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)
Berger, S., Pechal, M., Abdumalikov, A.A., Eichler, C., Steffen, L., Fedorov, A., Wallraff, A., Filipp, S.: Exploring the effect of noise on the Berry phase. Phys. Rev. A 87, 060303(R) (2013)
Yale, C.G., Joseph Heremans, F., Zhou, B.B., Auer, A., Burkard, G., Awschalom, D.D.: Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016)
Sjöqvist, E.: Trend: a new phase in quantum computation. Physics 1, 35 (2008)
Sjöqvist, E.: Geometric phases in quantum information. Int. J. Quantum Chem. 115, 1311 (2015)
Tan, X., Zhang, D.W., Zhang, Z., Yu, Y., Han, S., Zhu, S.L.: Demonstration of geometric Landau–Zener interferometry in a superconducting qubit. Phys. Rev. Lett 112, 027001 (2014)
Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)
Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (1999)
Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)
Wang, X.B., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)
Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)
Zhu, S.L., Wang, Z.D.: Geometric phase shift in quantum computation using superconducting nanocircuits: nonadiabatic effects. Phys. Rev. A 66, 042322 (2002)
Zhu, S.L., Wang, Z.D.: Universal quantum gates based on a pair of orthogonal cyclic states: application to NMR systems. Phys. Rev. A 67, 022319 (2003)
Zhang, X.D., Zhu, S.L., Hu, L., Wang, Z.D.: Nonadiabatic geometric quantum computation using a single-loop scenario. Phys. Rev. A. 71, 014302 (2005)
Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)
Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)
Sjöqvist, E., Tong, D.M., Andersson, L.M.A.L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)
Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)
Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)
Xue, Z.-Y., Zhou, J., Hu, Y.: Nonadiabatic holonomic quantum computation with all-resonant control. Phys. Rev. A 94, 022331 (2016)
Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109, 170501 (2012)
Abdumalikov, A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482 (2013)
Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Arroyo-Camejo, S., Lazariev, A., Hell, S.W., Balasubramanian, G.: Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)
Mousolou, V.A., Canall, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys 16, 013029 (2014)
Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72 (2014)
Wu, H., Gauger, E.M., George, R.E., Möttönen, M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., Morton, J.J.L.: Geometric phase gates with adiabatic control in electron spin resonance. Phys. Rev. A 87, 032326 (2013)
Zheng, S.B., Yang, C.P., Nori, F.: Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts. Phys. Rev. A 93, 032313 (2016)
Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)
Song, X.K., Zang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)
Du, Y.X., Liang, Z.T., Li, Y.C., Yue, X.X., Lv, Q.X., Huang, W., Chen, X., Yan, H., Zhu, S.L.: Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun. 7, 12479 (2016)
An, S., Lv, D., del Campo, A., Kim, K.: Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 7, 12999 (2016)
Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)
Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8, 147 (2012)
Zhou, B.B., Baksic, A., Ribeiro, H., Yale, C.G., Heremans, F.J., Jerger, P.C., Auer, A., Burkard, G., Clerk, A.A., Awschalom, D.D.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017)
Suter, D., Álvarez, G.A.: Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016)
Wu, L.A., Zanardi, P., Lidar, D.A.: Holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 95, 130501 (2005)
Cen, L.X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)
Zhang, X.D., Zhang, Q.H., Wang, Z.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)
Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)
Feng, X.L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)
Xue, Z.-Y., Zhu, S.-L., Wang, Z.D.: Quantum computation in a decoherence-free subspace with superconducting devices. Eur. Phys. J. D 55, 223 (2009)
Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)
Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)
Zhu, S.L., Monroe, C., Duan, L.M.: Trapped Ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)
Zhu, S.L., Monroe, C., Duan, L.M.: Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhys. Lett. 73, 485 (2006)
Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)
Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)
Häffner, H., Gulde, S., Riebe, M., Lancaster, G., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003)
Dzialoshinski, L.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)
Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)
Kim, K., Roos, C.F., Aolita, L., Häfner, H., Nebendahl, V., Blatt, R.: Geometric phase gate on an optical transition for ion trap quantum computation. Phys. Rev. A 77, 050303(R) (2008)
Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Riebe, M., Roos, C.F., Häffner, H., Hänsel, W., Hennrich, M., Blatt, R.: Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009)
Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)
Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)
Solinas, P., Zanardi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)
Zahedinejad, E., Ghosh, J., Sanders, B.C.: High-fidelity single-shot toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015)
Lin, Y., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Wan, Y., Keith, A., Knill, E., Glancy, S., Coakley, K., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 140502 (2016)
Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \({ ^{9}Be}^{+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)
Chen, Q., Yang, W.L., Feng, M.: Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator. Eur. Phys. J. D 66, 238 (2012)
Acknowledgements
We thank X. X. Yue, Z. Y. Xue and S. L. Zhu for their helpful discussions. This work was supported by National Natural Science Foundation of China (NSFC) (11704131, 11474107, 91636218, 61875060); National Key Research and Development Program of China (NKRDPC) (2016YFA0301803, 2016YFA0302800); and the Natural Science Foundation of Guangdong province (2016A030310462).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, JZ., Du, YX., Lv, QX. et al. Proposal of realizing superadiabatic geometric quantum computation in decoherence-free subspaces. Quantum Inf Process 18, 17 (2019). https://doi.org/10.1007/s11128-018-2134-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2134-0