Skip to main content
Log in

Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Unidirectional reflectionlessness is investigated in a non-Hermitian quantum system that consists of two plasmonic cavities (PCs) coupled to a plasmonic waveguide. By appropriately adjusting the phase shift and decay rate of two PCs, unidirectional reflectionlessness is obtained at exceptional points. And the bilateral unidirectional reflectionless propagation can be manipulated in a wide range of decay rate. Moreover, high non-reciprocal entanglement between two PCs is obtained under the appropriate phase shift and decay rate of two PCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)

    ADS  Google Scholar 

  2. Chen, W., Chen, G.Y., Chen, Y.N.: Controlling Fano resonance of nanowire surface plasmons. Opt. Lett. 36, 3602–3604 (2011)

    ADS  Google Scholar 

  3. Chen, G.Y., Chen, Y.N.: Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023–4025 (2012)

    ADS  Google Scholar 

  4. Zhou, L., Gong, Z.R., Liu, Y., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  5. Yan, W.B., Fan, H.: Control of single-photon transport in a one-dimensional waveguide by a single photon. Phys. Rev. A 90, 053807 (2014)

    ADS  Google Scholar 

  6. Zhou, L., Yang, S., Liu, Y., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    ADS  Google Scholar 

  7. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    ADS  Google Scholar 

  8. Zhou, L., Dong, H., Liu, Y., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    ADS  Google Scholar 

  9. Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)

    ADS  Google Scholar 

  10. Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18, 10360–10368 (2010)

    ADS  Google Scholar 

  11. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)

    ADS  Google Scholar 

  12. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005)

    ADS  Google Scholar 

  13. Fratini, F., Ghobadi, R.: Full quantum treatment of a light diode. Phys. Rev. A 93, 023818 (2016)

    ADS  Google Scholar 

  14. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Google Scholar 

  15. Quijandría, F., Naether, U., Özdemir, S.K., Nori, F., Zueco, D.: PT-symmetric circuit QED. Phys. Rev. A 97, 053846 (2018)

    ADS  Google Scholar 

  16. Kuo, P.C., Chen, G.Y., Chen, Y.N.: Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016)

    ADS  Google Scholar 

  17. Kim, N.C., Ko, M.C., Choe, C.I.: Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide. Plasmonics 10, 1447–1452 (2015)

    Google Scholar 

  18. Kim, N.C., Li, J.B., Yang, Z.J., Hao, Z.H., Wang, Q.Q.: Switching of a single propagating plasmon by two quantum dots system. Appl. Phys. Lett. 97, 061110 (2010)

    ADS  Google Scholar 

  19. Kim, N.C., Ko, M.C., Wang, Q.Q.: Single plasmon switching with n quantum dots system coupled to one-dimensional waveguide. Plasmonics 10, 611–615 (2014)

    Google Scholar 

  20. Kim, N.C., Ko, M.C., Choe, S.I., Jang, C.J., Kim, G.J., Hao, Z.H., Li, J.B., Wang, Q.Q.: Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon. Plasmonics 13, 1089–1095 (2017)

    Google Scholar 

  21. Kim, N.C., Ko, M.C., Choe, S.I., Hao, Z.H., Zhou, L., Li, J.B., Im, S.J., Ko, Y.H., Jo, C.G., Wang, Q.Q.: Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)

    ADS  Google Scholar 

  22. Chen, G.Y., Lambert, N., Chou, C.H., Chen, Y.N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    ADS  Google Scholar 

  23. Cheng, M.T., Song, Y.Y.: Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    ADS  Google Scholar 

  24. Wu, N., Zhang, C., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Unidirectional reflectionless phenomena in non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide. Opt. Express 26, 3839–3849 (2018)

    ADS  Google Scholar 

  25. Chen, G.Y., Li, C.M., Chen, Y.N.: Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337–1339 (2012)

    ADS  Google Scholar 

  26. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    ADS  Google Scholar 

  27. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79, 023838 (2009)

    ADS  Google Scholar 

  28. Cheng, M.T., Luo, Y.Q., Song, Y.Y., Zhao, G.X.: Single-photon scattering by a \(\Lambda \)-type three-level in a cavity coupling to one-dimensional waveguide. Opt. Commun. 283, 3721–3726 (2010)

    ADS  Google Scholar 

  29. Kim, N.C., Ko, M.C.: Switching of a single photon by two \(\Lambda \)-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics 10, 605–610 (2015)

    Google Scholar 

  30. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    MathSciNet  MATH  ADS  Google Scholar 

  31. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    MathSciNet  ADS  Google Scholar 

  32. Gao, T., Estrecho, E., Bliokh, K.Y., Liew, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A.: Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 15522 (2015)

    Google Scholar 

  33. Leykam, D., Bliokh, K.Y., Huang, C., Chong, Y.D., Nori, F.: Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017)

    MathSciNet  ADS  Google Scholar 

  34. Choi, Y., Kang, S., Lim, S., Kim, W., Kim, J.R., Lee, J.H., An, K.: Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010)

    ADS  Google Scholar 

  35. Wiersig, J.: Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014)

    ADS  Google Scholar 

  36. Shin, Y., Kwak, H., Moon, S., Lee, S.B., Yang, J., An, K.: Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells. Sci. Rep. 6, 38826 (2016)

    ADS  Google Scholar 

  37. Xu, J., Du, Y.X., Huang, W., Zhang, D.W.: Detecting topological exceptional points in a parity-time symmetric system with cold atoms. Opt. Express 25, 15786–15795 (2017)

    ADS  Google Scholar 

  38. Jing, H., Özdemir, S.K., Geng, Z., Zhang, J., Lü, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)

    Google Scholar 

  39. Jing, H., Özdemir, S.K., Lü, H., Nori, F.: High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017)

    ADS  Google Scholar 

  40. Jing, H., Özdemir, S.K., Lü, X.Y., Zhang, J., Yang, L., Nori, F.: PT-symmetric phonon laser. Phys. Rev. Lett. 113, 053604 (2014)

    ADS  Google Scholar 

  41. Lü, H., Özdemir, S.K., Kuang, L.M., Nori, F., Jing, H.: Exceptional points in random-defect phonon lasers. Phys. Rev. Appl. 8, 044020 (2017)

    ADS  Google Scholar 

  42. Zhang, J., Peng, B., Özdemir, S.K., Pichler, K., Krimer, D.O., Zhao, G., Nori, F., Liu, Y.X., Rotter, S., Yang, L.: A phonon laser operating at an exceptional point. Nat. Photon. 12, 479–484 (2018)

    ADS  Google Scholar 

  43. Peng, B., Özdemir, Ṣ.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Google Scholar 

  44. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    ADS  Google Scholar 

  45. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    ADS  Google Scholar 

  46. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    ADS  Google Scholar 

  47. Sun, Y., Tan, W., Li, H.Q., Li, J., Chen, H.: Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014)

    ADS  Google Scholar 

  48. Peng, B., Özdemir, S.K., Chen, W., Nori, F., Yang, L.: What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 5, 5082 (2014)

    ADS  Google Scholar 

  49. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    ADS  Google Scholar 

  50. Huang, Y., Veronis, G., Min, C.: Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt. Express 23, 29882–29895 (2015)

    ADS  Google Scholar 

  51. Gu, X., Bai, R., Zhang, C., Jin, X.R., Zhang, Y.Q., Zhang, S., Lee, Y.P.: Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling. Opt. Express 25, 11778–11787 (2017)

    ADS  Google Scholar 

  52. Bai, R., Zhang, C., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling. Sci. Rep. 7, 10742 (2017)

    ADS  Google Scholar 

  53. Zhang, C., Bai, R., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Opt. Express. 25, 24281–24289 (2017)

    Google Scholar 

  54. Peng, B., Özdemir, S.K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C.M., Nori, F., Yang, L.: Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014)

    ADS  Google Scholar 

  55. Bliokh, K.Y., Rodríguez-Fortuño, F.J., Bekshaev, A.Y., Kivshar, Y.S., Nori, F.: Electric-current-induced unidirectional propagation of surface plasmon-polaritons. Opt. Lett. 43, 963–966 (2018)

    ADS  Google Scholar 

  56. Maayani, S., Dahan, R., Kligerman, Y., Moses, E., Hassan, A.U., Jing, H., Nori, F., Christodoulides, D.N., Carmon, T.: Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569–572 (2018)

    ADS  Google Scholar 

  57. Jin, X.R., Sun, L., Yang, X.D., Gao, J.: Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt. Lett. 38, 4078–4081 (2013)

    ADS  Google Scholar 

  58. Zheng, H., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013)

    ADS  Google Scholar 

  59. Fratini, F., Mascarenhas, E., Safari, L., Poizat, J-h, Valente, D., Auffèves, A., Gerace, D., Santos, M.F.: Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification. Phys. Rev. Lett. 113, 243601 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11364044, 11864043), the Education Department of Jilin Province Science and Technology Research Project (Grant No. JJKH20170455KJ) and the Science and Technology Development Foundation of Jilin Province (Grant No. 20180101342JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Ri Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, DX., Bai, R., Zhang, C. et al. Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities. Quantum Inf Process 18, 28 (2019). https://doi.org/10.1007/s11128-018-2139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2139-8

Keywords

Navigation