Abstract
In consideration of the time-dependent transmittance caused by atmospheric turbulence, we combine real-time selection (RTS) method with measurement device independent quantum key distribution (MDI-QKD). The modified scheme filters out the intervals with high channel transmittance and thus in turn increases the secure key rate. The optimal threshold of post-selection is determined by an iterative algorithm in advance, which balances the decrease in the total number of signals and the increase in average transmittance. Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the original MDI-QKD protocol. The MDI-QKD with RTS even performs better when the level of turbulence becomes larger. Furthermore, the modified scheme is more stable against the statistical fluctuation as well.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Lütkenhaus, N., Shields, A.: Focus on quantum cryptography: theory and practice. New J. Phys. 11(4), 300–310 (2009)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)
Gottesman, D., Lo. H.K., Lütkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Information Theory, 2004. In: Proceedings. International Symposium on ISIT 2004. IEEE, p. 136 (2005)
Gottesman, D., Lo, H.K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)
Takesue, H., Nam, S.W., Zhang, Q., et al.: Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors. Nat. Photonics 1(17), 5078–5081 (2007)
Braunstein, S.L., Pirandola, S.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108(13), 4089–4091 (2012)
Brassard, G., Lutkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)
Yuan, Z.L.: Avoiding the blinding attack in QKD. Nat. Photonics 4(4), 800–801 (2010)
Zhao, Y., Fung, C.H.F., Qi, B., et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)
Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)
Sun, S.H., Gao, M., Li, C.Y., et al.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)
Zhang, Y.C., Li, Z.Y., Yu, S., et al.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)
Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)
Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)
Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)
Yin, J., Ren, J.G., Lu, H., et al.: Quantum teleportation and entanglement distribution over 100 km free-space channels. Nature 488(7410), 185 (2012)
Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 7670 (2017)
Wang, L., Zhao, S.M., Gong, L.Y., et al.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 238–245 (2015)
Goyal, S., Ibrahim, A.H., Roux, F.S., et al. Experimental orbital angular momentum based quantum key distribution through turbulence. arXiv ID: 1412.0788
Capraro, I., Tomaello, A., Dall’Arche, A., et al.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)
Vallone, G., Marangon, D.G., Canale, M., et al.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91(4), 042320 (2015)
Erven, C., Heim, B., Meyerscott, E., et al.: Studying free-space transmission statistics and improving free-space QKD in the turbulent atmosphere. New J. Phys. 14(12), 852–859 (2012)
Wang, W.Y., Xu, F.H., Lo, H.K.: Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A 97(3), 032337 (2018)
Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Nature 3, 30 (2017)
Acknowledgements
C. Dong is supported by the National Natural Science Foundation of China (Grant No. 11704412). C. Dong is supported by the Foundation of National University of Defense and Technology (Grant No. ZK17-02-09).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhu, ZD., Chen, D., Zhao, SH. et al. Real-time selection for free-space measurement device independent quantum key distribution. Quantum Inf Process 18, 33 (2019). https://doi.org/10.1007/s11128-018-2146-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2146-9