Abstract
The pairwise nonclassical correlations for two-qubit states, extracted from multi-qubit system with exchange symmetry and parity, are quantified by local quantum uncertainty and trace distance discord. The explicit expressions of local quantum uncertainty and geometric trace distance discord for Dicke states and their superpositions are given. A comparison between the two quantum correlations quantifiers is discussed.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
For a fixed odd value of N, LQU and TDD vary in function the n according to curves similar to those of Fig. 1. The only difference lies in two concerned quantifiers extremes points. Indeed, when \((N-1)\) [Resp. \((N+1)\)] is a multiple of 4, the two local maxima of LQU are pointing in \(n_-=(N+1)/4\) [Resp. \( (N-1)/4\)] and \(n_+=(3N-1)/4\) [Resp. \((3N+1)/4\)], while its local minimum, which corresponds to TDD’s local maximum, is pointed in \((N-1)/2\) and \((N+1)/2\).
References
Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005)
Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 269, 107 (2007)
Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)
Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)
Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)
Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)
Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)
Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)
Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)
Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)
Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)
Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125 (2009)
Wigner, E.P., Yanasse, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)
Luo, S.: Wigner–Yanase Skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)
Wang, S., Li, H., Lu, X., Long, G.-L.: Closed form of local quantum uncertainty and a sudden change of quantum correlations. quant-ph/ arXiv:1307.0576v2
Slaoui, A., Daoud, M., Ahl Laamara, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)
Wang, X., Mølmer, K.: Pairwise entanglement in symmetric multi-qubit systems. Eur. Phys. J. D 18, 385 (2002)
Yin, X., Xi, Z., Lu, X.-M., Sun, Z., Wang, X.: Geometric measure of quantum discord for superpositions of Dicke states. J. Phys. B: At. Mol. Opt. Phys. 44, 245502 (2011)
Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)
Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)
Bergmann, M., Gühne, O.: Entanglement criteria for Dicke states. J. Phys. A: Math. Theor. 46, 385304 (2013)
Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Nonlocality of a single photon? Phys. Rev. Lett. 75, 2064 (1995)
Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)
Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A: Gen. Phys. 4, 313 (1971)
Daoud, M., Ahl Laamara, R., Kaydi, W.: Multipartite quantum correlations in even and odd spin coherent states. J. Phys. A: Math. Theor. 46, 395302 (2013)
Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)
Bloch, F.: Nuclear Induction. Phys. Rev. 70, 460 (1946)
Fano, U.: Pairs of two-level systems. Rev. Mod. Phys. 55, 855 (1983)
Kedif, Y., Daoud, M.: Local quantum uncertainty and trace distance discord dynamics for two-qubit X states embedded in non-Markovian environment. Int. J. Mod. Phys. B 32, 1850218 (2018)
Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)
Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)
Li, D., Li, X., Huang, H.: Stochastic local operations and classical communication properties of the n-qubit symmetric Dicke states. Europhys. Lett. 87, 20006 (2009)
Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)
Xi, Z.-J., Xiong, H.-N., Li, Y.-M., Wang, X.-G.: Pairwise quantum correlations for superpositions of dicke states. Commun. Theor. Phys. 57, 771 (2012)
Ma, Z.-H., Chen, Z.-H., Fanchini, F.F.: Multipartite quantum correlations in open quantum systems. New J. Phys. 15, 043023 (2013)
Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96, 60003 (2011)
Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)
Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)
Lipkin, H.J., Meshkov, N., Glick, A.J. : Validity of many-body approximation methods for a solvable model. (I). Exact solutions and perturbation theory. Nucl. Phys. 62 188 (1965)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Khedif, Y., Daoud, M. Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord. Quantum Inf Process 18, 45 (2019). https://doi.org/10.1007/s11128-018-2149-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2149-6