Abstract
In this paper, some families of asymmetric quantum codes and quantum convolutional codes that satisfy the quantum Singleton bound are constructed by utilizing constacyclic codes with length \(n=\frac{q^2+1}{10h}\), where q is an odd prime power with the form \(q=10hm+t\) or \(q=10hm+10h-t\), where m is a positive integer, and both h and t are odd with \(10h=t^2+1\) and \(t\ge 3\). Compared with those codes constructed in the literature, the parameters of these constructed quantum codes in this paper are more general. Moreover, the distance \(d_z\) of optimal asymmetric quantum codes \([[n,k,d_z/d_x]]_{q^2}\) here is larger than most of the ones given in the literature.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aly, S.A.: Asymmetric quantum BCH codes. In: Proceedings International Conference on Computer Engineering System, pp. 157–162 (2008)
Aly, S.A., Grassl, M., Klappenecker, A., Rötteler, M., Sarvepalli, P.K.: Quantum convolutional BCH codes. In: Proceedings of 10th Canadian Workshop on Information Theory, pp. 180–183 (2007)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Quantum convolutional codes derived from Reed–Solomon and Reed–Muller codes. arXiv:quant-ph/0701037
Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–3072 (2001)
Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24, 313–326 (2001)
Bakshi, G.K., Raka, M.: A class of constacyclic codes over a finite field. Finite Fields Appl. 18, 362–377 (2012)
Berlekamp, E.R.: Negacyclic codes for the Lee metric. In: Proceedings of Symposium in Combinatorial Mathematics and Its Applications, pp. 1–27 (1967)
Blackford, T.: Negacyclic duadic codes. Finite Fields Appl. 14, 930–943 (2008)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Chen, B., Fan, Y., Lin, L., Liu, H.: Constacyclic codes over finite fields. Finite Fields Appl. 18, 1217–1231 (2012)
Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61(3), 1474–1484 (2015)
Chen, J., Li, J., Lin, J.: New optimal asymmetric quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 53(1), 72–79 (2014)
Chen, J., Huang, Y., Feng, C., Chen, R.: Some families of optimal quantum codes derived from constacyclic codes. Linear Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1432544
Chen, J., Li, J., Yang, F., Huang, Y.: Nonbinary quantum convolutional codes derived from negacyclic nodes. Int. J. Theor. Phys. 54(1), 198–209 (2015)
Chen, J., Lin, J., Huang, Y.: Asymmetric quantum codes and quantum convolutional codes derived from nonprimitive non-narrow-sense BCH codes. IEICE Trans. Fund. Electr. 98(5), 1130–1135 (2015)
Chen, J., Li, J., Yang, F., Lin, J.: Some families of asymmetric quantum codes and quantum convolutional codes from constacyclic codes. Linear Algebra Appl. 475, 186–199 (2015)
Chen, X., Zhu, S., Kai, X.: Two classes of new optimal asymmetric quantum codes. Int. J. Theor. Phys. 57(6), 1829–1838 (2018)
de Almeida, A.C.A., Palazzo, R. Jr.: A concatenated [(4,1,3)] quantum convolutional code. In: Proceedings of Information Theory Workshop, pp. 28–33 (2004)
Huang, Y., Chen, J., Feng, C., Chen, R.: Some families of asymmetric quantum MDS codes constructed from constacyclic codes. Int. J. Theor. Phys. 57(2), 453–464 (2018)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. University Press, Cambridge (2003)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Kai, X., Zhu, S., Tang, Y.: Quantum negacyclic codes. Phys. Rev. A 88(1), 012326 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)
Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory 36(4), 880–884 (1990)
La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80(4), 042331 (2009)
La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)
La Guardia, G.G.: New families of asymmetric quantum BCH codes. Quantum Inf. Comput. 11(3), 239–252 (2011)
La Guardia, G.G.: Asymmetric quantum Reed-Solomon and generalized Reed–Solomon codes. Quantum Inf. Process. 11(2), 591–604 (2012)
La Guardia, G.G.: Asymmetric quantum product codes. Int. J. Quantum Inf. 10(1), 1250005 (2012)
La Guardia, G.G.: On nonbinary quantum convolutional BCH codes. Quantum Inf. Comput. 12(9–10), 820–842 (2012)
La Guardia, G.G.: Asymmetric quantum codes: new codes from old. Quantum Inf. Process. 12(8), 2771–2790 (2013)
La Guardia, G.G.: On the construction of asymmetric quantum codes. Int. J. Theor. Phys. 53(7), 2312–2322 (2014)
La Guardia, G.G.: On classical and quantum MDS-convolutional BCH codes. IEEE Trans. Inf. Theory 60(1), 304–312 (2014)
La Guardia, G.G.: On MDS-convolutional codes. Linear Algebra Appl. 448, 85–96 (2014)
La Guardia, G.G.: On optimal constacyclic codes. Linear Algebra Appl. 496, 594–610 (2016)
Leng, R.G., Ma, Z.: Constructions of new families of nonbinary asymmetric quantum BCH codes and subsystem BCH codes. Sci. China Phys. Mech. 55(3), 465–469 (2012)
Li, F., Yue, Q.: New quantum MDS-convolutional codes derived from constacyclic codes. Mod. Phys. Lett. B 29, 1550252 (2015)
Li, R., Xu, G., Guo, L.: On two problems of asymmetric quantum codes. Int. J. Mod. Phys. B 28(6), 1450017 (2013)
Lü, L., Ma, W., Li, R., Ma, Y., Guo, L.: New quantum MDS codes constructed from constacyclic codes. arXiv:1803.07927
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-correcting Codes. North-Holland, Amsterdam (1977)
Qian, J., Zhang, L.: New optimal asymmetric quantum codes. Mod. Phys. Lett. B 27(2), 1350010 (2013)
Qian, J., Zhang, L.: Improved constructions for quantum maximum distance separable codes. Quantum Inf. Process. 16(1), 20 (2017)
Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE Trans. Inf. Theory 45(7), 2492–2495 (1999)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015)
Wang, L., Zhu, S.: On the construction of optimal asymmetric quantum codes. Int. J. Quantum Inf. 12(3), 1450017 (2014)
Xu, G., Li, R., Guo, L., Lü, L.: New optimal asymmetric quantum codes constructed from constacyclic codes. Int. J. Mod. Phys. B 31(5), 1750030 (2017)
Yan, T., Huang, X., Tang, Y.: Quantum convolutional codes derived from constacyclic codes. Mod. Phys. Lett. B 28(31), 1450241 (2014)
Zhang, G., Chen, B., Li, L.: New optimal asymmetric quantum codes from constacyclic codes. Mod. Phys. Lett. B 28(15), 1450126 (2014)
Zhang, G., Chen, B., Li, L.: A construction of MDS quantum convolutional codes. Int. J. Theor. Phys. 54(9), 3182–3194 (2015)
Zhu, S., Wang, L., Kai, X.: New optimal quantum convolutional codes. Int. J. Quantum Inf. 13(3), 1550019 (2015)
Acknowledgements
The research was supported by the Natural Science Foundation of China (No. 61802064) and the Natural Science Foundation of Fujian Province, China (Nos. 2016J01281, 2016J01278). We are indebted to anonymous reviewers who have made constructive suggestions for the improvement of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, J., Chen, Y., Huang, Y. et al. New optimal asymmetric quantum codes and quantum convolutional codes derived from constacyclic codes. Quantum Inf Process 18, 40 (2019). https://doi.org/10.1007/s11128-018-2156-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2156-7