Abstract
We construct the convex set \(\mathcal{M}\) of two-qutrit states, and the subset \(\mathcal{P}\subset \mathcal{M}\). We characterize the extremal points of rank one and rank two of \(\mathcal{M}\). We further show that the extremal points of \(\mathcal{P}\) have rank not equaling to two, and at most six. We apply our results to a long-standing conjecture on the locally distinguishable subspace under local operations and classical communications. We prove that rank-one or rank-two matrices in \(\mathcal{M}\) hold for the conjecture. We further simplify the conjecture, by showing that the conjecture holds if and only if it holds for states in \(\mathcal{P}\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Buzek, V., Hillery, M., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)
Deng, F.G., Gui, L.L., Xiao, S.L.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Kwiat, P.G., Barraza-Lopez, S., Stefanov, A., Gisin, N.: Experimental entanglement distillation and ’hidden’ non-locality. Nature 409(6823), 1014–7 (2001)
Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J.: Experimental entanglement of four particles. Nature 404(6775), 256 (2000)
Lin, C., Zhu, H., Wei, T.C.: Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation. Phys. Rev. A 83(1), 99–104 (2011)
Facchi, P., Florio, G., Pascazio, S., Pepe, F.: Maximally multipartite entangled states. Phys. Rev. A 77(6), 060304 (2008)
O’Meara, C., Pereira, R.: Self-dual maps and symmetric bistochastic matrices. Linear Multilinear Algebra 61(1), 23–34 (2013)
Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of protocols of entanglement distillation. Physics 59(59), 4206–4216 (1997)
Yang, D., Chen, Y.X.: Mixture of multiple copies of maximally entangled states is quasipure. Phys. Rev. A Atomic Mol. Opt. Phys. 69(2), 577–580 (2012)
Ishizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62(62), 578–592 (2000)
Kent, A.: Entangled mixed states and local purification. Phys. Rev. Lett. 81(14), 2839–2841 (1998)
Terhal, B.M., Vollbrecht, K.G.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85(12), 2625 (2000)
Flores, M.M., Galapon, E.A.: Mixtures of maximally entangled pure states. Ann. Phys. 372, 297–308 (2016)
Kraus, B.: Local unitary equivalence and entanglement of multipartite pure states. Phys. Rev. A 82, 032121 (2010)
Vidal, G., Dur, W., Cirac, J.I.: Entanglement cost of bipartite mixed states. Phys. Rev. Lett. 89(2), 027901 (2002)
Vianna, R.O., Doherty, A.C.: Distillability of werner states using entanglement witnesses and robust semidefinite programs. Phys. Rev. A 74, 052306 (2006)
Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)
King, C., Matysiak, D.: On the existence of locc-distinguishable bases in three-dimensional subspaces of bipartite 3 x n systems. J. Phys. A Math. Theor. 40(28), 7939 (2007)
Chen, L.: On the locally distinguishable three-dimensional subspace of bipartite systems. J. Phys. A Math. Theor. 51(14), 145301 (2018)
Acknowledgements
We thank the anonymous referee for improving an earlier version of this paper. This work was supported by the NNSF of China (Grant No. 11871089), Beijing Natural Science Foundation (4173076), and the Fundamental Research Funds for the Central Universities (Grant Nos. KG12040501, ZG216S1810 and ZG226S18C1).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, L. The convex set containing two-qutrit maximally entangled states. Quantum Inf Process 18, 46 (2019). https://doi.org/10.1007/s11128-018-2159-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2159-4