Skip to main content
Log in

Practical covert quantum key distribution with decoy-state method

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Covert communication methods are used in the communication with high security level. When it turns to quantum communication, covertness is also an important concern which is firstly discussed by Arrazola and Scarani (Phys Rev Lett, 117:250503, 2016). To make quantum key distribution (QKD) protocol more suitable in the scenarios need high security, we propose a covert QKD protocol with decoy-state method in this paper. The secure key rate and covertness of the covert decoy-state QKD are proved. We compare the performance of the covert decoy-state QKD with those of the original decoy-state QKD and covert QKD without decoy states in numerical simulations. It shows that (1) the covert decoy-state QKD can have a performance comparable to the original decoy-state QKD protocol besides its covertness; (2) the covert decoy-state QKD can have a considerable improvement of transmission distance over covert QKD without decoy states at the cost of a small change of covertness parameter. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the Gaussian analysis method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York City (2002)

    Google Scholar 

  3. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  4. Bash, B.A., Guha, S., Goeckel, D., Towsley, D.: Quantum noise limited optical communication with low probability of detection. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1715–1719 (2013)

  5. Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding messages in noise. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2945–2949 (2013)

  6. Bash, B.A., Goeckel, D., Towsley, D.: Limits of reliable communication with low probability of detection on awgn channels. IEEE J. Sel. Areas Commun. 31, 1921 (2013)

    Article  Google Scholar 

  7. Bash, B.A., Gheorghe, A.H., Patel, M., Habif, J.L., Goeckel, D., Towsley, D., Guha, S.: Quantum-secure covert communication on bosonic channels. Nat. Commun. 6, 8626 (2015)

    Article  ADS  Google Scholar 

  8. Arrazola, J.M., Scarani, V.: Covert quantum communication. Phys. Rev. Lett. 117, 250503 (2016)

    Article  ADS  Google Scholar 

  9. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  10. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  11. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  12. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  13. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  14. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  15. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  16. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009)

    Article  ADS  Google Scholar 

  17. Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  18. Song, T.T., Zhang, J., Qin, S.J., Gao, F., Wen, Q.Y.: Finite-key analysis for quantum key distribution with decoy states. Quantum Inf. Comput. 11, 374–389 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  20. Song, T.T., Wen, Q.Y., Guo, F.Z., Tan, X.Q.: Finite-key analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)

    Article  ADS  Google Scholar 

  21. Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)

    Article  ADS  Google Scholar 

  22. Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  23. Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement device independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)

    Article  ADS  Google Scholar 

  24. Zhou, C., Bao, W.S., Zhang, H.L., Li, H.W., Wang, Y., Li, Y., Wang, X.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)

    Article  ADS  Google Scholar 

  25. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)

    Article  ADS  Google Scholar 

  26. Liu, L., Guo, F.Z., Qin, S.J., Wen, Q.Y.: Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Sci. Rep. 7, 42261 (2017)

    Article  ADS  Google Scholar 

  27. Liu, L., Guo, F.Z., Wen, Q.Y.: Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources. Sci. Rep. 7, 11370 (2017)

    Article  ADS  Google Scholar 

  28. Wang, Y., Bao, W.S., Zhou, C., Jiang, M.S., Li, H.W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94, 032335 (2016)

    Article  ADS  Google Scholar 

  29. Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)

    Article  ADS  Google Scholar 

  30. Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)

    Article  ADS  Google Scholar 

  31. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  32. Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)

    Article  ADS  Google Scholar 

  33. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  35. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  36. Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  37. Cody, W.J.: Algorithm 715: SPECFUNCA portable fortran package of special function routines and test drivers. ACM Trans. Math. Softw. 19, 22 (1993)

    Article  Google Scholar 

  38. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  39. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grant Nos. 61572081, 61672110 and 61671082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we derive Eve’s state \(\sigma _\mathrm{E}\) when Alice and Bob communicate and give the details on how to obtain the bound of detection bias \(\delta \).

We have

$$\begin{aligned} \sigma _\mathrm{E}=(1-q^s-q^d)\rho _\mathrm{E}+q^s\rho _s+q^d\rho _d, \end{aligned}$$
(A1)

and \(\rho _\mathrm{E}\) is shown in Eq. (14). The state \(\rho _s\) and \(\rho _d\) can be given

$$\begin{aligned} \begin{aligned}&\rho _s=\sum _{k=0}^{2}\sum _{l=0}^{1}p(k,l)\sigma _{k,l},\\&\rho _d=\sum _{k'=0}^{2}\sum _{l'=0}^{1}p(k',l')\sigma _{k',l'}, \end{aligned} \end{aligned}$$
(A2)

where \(p(k,l)=\frac{{{\bar{n}}}^k}{(1+{\bar{n}})^{k+1}}\frac{\hbox {e}^{-\mu }\mu ^l}{l!}\), \(p(k',l')=\frac{{{\bar{n}}}^{k'}}{(1+{\bar{n}})^{k'+1}}\frac{\hbox {e}^{-\upsilon }\upsilon ^{l'}}{l'!}\) and \(\sigma _{k,l}\) is Eve’s state when there are k photons coming from the signal states and l photons from the noise, \(\sigma _{k',l'}\) is Eve’s state when there are k photons coming from the decoy states and l photons from the noise.

We can obtain

$$\begin{aligned} \rho _s&=p(0,0)\sigma _{0,0}+p(0,1)\sigma _{0,1}+p(1,0)\sigma _{1,0}+p(1,1)\sigma _{1,1} \nonumber \\&\quad +p(2,0)\sigma _{2,0}+p(2,1)\sigma _{2,1} \nonumber \\&=\Bigg [\frac{1}{1+{\bar{n}}}\hbox {e}^{-\mu }+\frac{1}{1+{\bar{n}}}\hbox {e}^{-\mu }\mu \eta +\frac{{\bar{n}}}{(1+{\bar{n}})^2}\hbox {e}^{-\mu }(1-\eta ) \nonumber \\&\quad +\frac{{\bar{n}}}{(1+{\bar{n}})^2}\hbox {e}^{-\mu }\mu 2\eta (1-\eta )+\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }(1-\eta )^2 \nonumber \\&\quad +\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }\mu 3\eta (1-\eta )^2\Bigg ]\left| 0\right\rangle \left\langle 0\right| \nonumber \\&\quad \quad \Bigg [\frac{1}{1+{\bar{n}}}\hbox {e}^{-\mu }\mu (1-\eta )+\frac{{\bar{n}}}{(1+{\bar{n}})^2}\hbox {e}^{-\mu }\eta +\frac{{\bar{n}}}{(1+{\bar{n}})^2}\hbox {e}^{-\mu } \nonumber \\&\quad \quad \mu (1-2\eta )^2+\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }2\eta (1-\eta ) +\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\nonumber \\&\quad \quad \hbox {e}^{-\mu }\mu (1-\eta )(1-3\eta )^2\Bigg ]\left| 1\right\rangle \left\langle 1\right| \nonumber \\&\quad \quad \Bigg [\frac{{\bar{n}}}{(1+{\bar{n}})^2}\hbox {e}^{-\mu }\mu 2\eta (1-\eta )+\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }\eta ^2 \nonumber \\&\quad +\frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }\mu \eta (2-3\eta )^2\Bigg ]\left| 2\right\rangle \left\langle 2\right| \nonumber \\&\quad \quad \frac{({\bar{n}})^2}{(1+{\bar{n}})^3}\hbox {e}^{-\mu }\mu 3\eta ^2(1-\eta )\left| 3\right\rangle \left\langle 3\right| . \end{aligned}$$
(A3)

In the same way, we can get the state \(\rho _d\). Then Eve’s state \(\sigma _\mathrm{E}\) when Alice and Bob communicate can be obtained.

The state \(\rho _\mathrm{E}\) and the state \(\sigma _\mathrm{E}\) that Eve gets when Alice and Bob communicate are diagonal in the Fock basis. Thus, we can treat both states as classical probability distributions and write [8]

$$\begin{aligned} D(\rho \parallel \sigma )=\sum _{n=0}^{\infty }\rho _\mathrm{E}(n)[\log (\rho _\mathrm{E}(n))-\log (\sigma _\mathrm{E}(n))], \end{aligned}$$
(A4)

where \(\rho _\mathrm{E}(n)\) and \(\sigma _\mathrm{E}(n)\) are the probability of observing n photons in each cases. However, higher-order terms actually decrease the value of the relative entropy. Therefore, to obtain an upper bound on the relative entropy, it suffices to consider only terms to first order in \({\bar{n}}\) and to second order in \(\mu ,\upsilon \).

We can get

$$\begin{aligned} \begin{aligned} D(\rho _\mathrm{E}\parallel \sigma _\mathrm{E})&\le \rho _\mathrm{E}(0)[\log (\rho _\mathrm{E}(0))-\log (\sigma _\mathrm{E}(0))]\\&\quad +\rho _\mathrm{E}(1)[\log (\rho _\mathrm{E}(1))-\log (\sigma _\mathrm{E}(1))] \\&=\frac{\rho _\mathrm{E}(0)}{\ln 2}[\ln (\rho _\mathrm{E}(0))-\ln (\sigma _\mathrm{E}(0))]\\&\quad +\frac{\rho _\mathrm{E}(1)}{\ln 2}[\ln (\rho _\mathrm{E}(1))-\ln (\sigma _\mathrm{E}(1))]. \end{aligned} \end{aligned}$$
(A5)

We obtain a bound through a Taylor series expansion, keeping terms to second order in \(\mu \).

$$\begin{aligned}&\frac{\rho _\mathrm{E}(0)}{\ln 2}\ln (\rho _\mathrm{E}(0))-\frac{\rho _\mathrm{E}(0)}{\ln 2}\ln (\sigma _\mathrm{E}(0))\le \frac{1}{\ln 2}\Bigg [\Bigg (\frac{\eta -\frac{1}{2}}{1+{\bar{n}}} \nonumber \\&\quad +\frac{{\bar{n}}(1-\eta )(2\eta -\frac{1}{2})}{(1+{\bar{n}})^2}+\frac{{\bar{n}}^2(1-\eta )^2(3\eta -\frac{1}{2})}{(1+{\bar{n}})^3}\Bigg )\mu ^2 \nonumber \\&\quad +\Bigg (\frac{1-\eta }{1+{\bar{n}}}+\frac{{\bar{n}}(1-\eta )(1-2\eta )}{(1+{\bar{n}})^2}+\frac{{\bar{n}}^2(1-\eta )^2(1-3\eta )}{(1+{\bar{n}})^3}\Bigg )\mu \nonumber \\&\quad +\frac{(1-\eta )^2}{1+{\bar{n}}}-\frac{1}{1+{\bar{n}}}-\frac{1}{(1+{\bar{n}})^2}-\frac{1}{(1+{\bar{n}})^3}\Bigg ]q^s \nonumber \\&\quad +\frac{1}{2!\ln 2\rho _\mathrm{E}(0)}\Bigg [\Bigg (\frac{\eta -1}{1+{\bar{n}}}+\frac{{\bar{n}}(1-\eta )(2\eta -1)}{(1+{\bar{n}})^2} \nonumber \\&\quad +\frac{{\bar{n}}^2(1-\eta )^2(3\eta -1)}{(1+{\bar{n}})^3}\Bigg )^2\mu ^2+2\Bigg (\frac{\frac{1}{2}-\eta }{1+{\bar{n}}}+\frac{{\bar{n}}(1-\eta )(\frac{1}{2}-2\eta )}{(1+{\bar{n}})^2} \nonumber \\&\quad \quad \frac{{\bar{n}}^2(1-\eta )^2(\frac{1}{2}-3\eta )}{(1+{\bar{n}})^3}\Bigg )\Bigg (\frac{1}{1+{\bar{n}}}+\frac{1}{(1+{\bar{n}})^2}+\frac{1}{(1+{\bar{n}})^3} \nonumber \\&\quad -\frac{(1-\eta )^2}{1+{\bar{n}}}\Bigg )\mu ^2+2\Bigg (\frac{\eta -1}{1+{\bar{n}}}+\frac{{\bar{n}}(1-\eta )(2\eta -1)}{(1+{\bar{n}})^2} \nonumber \\&\quad +\frac{{\bar{n}}^2(1-\eta )^2(3\eta -1)}{(1+{\bar{n}})^3}\Bigg )\Bigg (\frac{1}{1+{\bar{n}}}+\frac{1}{(1+{\bar{n}})^2}+\frac{1}{(1+{\bar{n}})^3} \nonumber \\&\quad -\frac{(1-\eta )^2}{1+{\bar{n}}}\Bigg )\mu +\Bigg (\frac{1}{1+{\bar{n}}}+\frac{1}{(1+{\bar{n}})^2}+\frac{1}{(1+{\bar{n}})^3} \nonumber \\&\quad -\frac{(1-\eta )^2}{1+{\bar{n}}}\Bigg )^2\Bigg ](q^s)^2, \end{aligned}$$
(A6)

and

$$\begin{aligned}&\frac{\rho _\mathrm{E}(1)}{\ln 2}\ln (\rho _\mathrm{E}(1))-\frac{\rho _\mathrm{E}(1)}{\ln 2}\ln (\sigma _\mathrm{E}(1)) \nonumber \\&\le \frac{1}{\ln 2}\Bigg [\Bigg (\frac{1-\eta }{1+{\bar{n}}} +\frac{{\bar{n}}(1-2\eta )^2}{(1+{\bar{n}})^2}-\frac{\frac{1}{2}{\bar{n}}\eta }{(1+{\bar{n}})^2}+\frac{{\bar{n}}^2(1-\eta )(1-3\eta )^2}{(1+{\bar{n}})^3} \nonumber \\&\quad -\frac{\frac{1}{2}{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}\Bigg )\mu ^2+\Bigg (-\frac{1-\eta }{1+{\bar{n}}}+\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2} \nonumber \\&\quad -\frac{{\bar{n}}(1-2\eta )^2}{(1+{\bar{n}})^2}+\frac{{\bar{n}}^22\eta (1-\eta )^2}{(1+{\bar{n}})^3}-\frac{{\bar{n}}^2(1-\eta )(1-3\eta )^2}{(1+{\bar{n}})^3}\Bigg )\mu \nonumber \\&\quad +\frac{{\bar{n}}^2(1-\eta )^2}{(1+{\bar{n}})^4}-\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2}-\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}\Bigg ]q^s \nonumber \\&\quad +\frac{1}{2!\ln 2\rho _\mathrm{E}(1)}\Bigg [\Bigg (\frac{1-\eta }{1+{\bar{n}}}-\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2}+\frac{{\bar{n}}(1-2\eta )^2}{(1+{\bar{n}})^2} \nonumber \\&\quad +\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}-\frac{{\bar{n}}^2(1-\eta )(1-3\eta )^2}{(1+{\bar{n}})^3}\Bigg )^2\mu ^2 \nonumber \\&\quad +2\Bigg (-\frac{1-\eta }{1+{\bar{n}}}+\frac{\frac{1}{2}{\bar{n}}\eta }{(1+{\bar{n}})^2}-\frac{{\bar{n}}(1-2\eta )^2}{(1+{\bar{n}})^2}-\frac{\frac{1}{2}{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3} \nonumber \\&\quad +\frac{{\bar{n}}^2(1-\eta )(1-3\eta )^2}{(1+{\bar{n}})^3}\Bigg )\Bigg (\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2}+\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3} \nonumber \\&\quad -\frac{{\bar{n}}^2(1-\eta )^2}{(1+{\bar{n}})^4}\Bigg )\mu ^2+2\Bigg (\frac{1-\eta }{1+{\bar{n}}}-\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2}+\frac{{\bar{n}}(1-2\eta )^2}{(1+{\bar{n}})^2} \nonumber \\&\quad -\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}+\frac{{\bar{n}}^2(1-\eta )(1-3\eta )^2}{(1+{\bar{n}})^3}\Bigg )\Bigg (\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2} \nonumber \\&\quad +\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}-\frac{{\bar{n}}^2(1-\eta )^2}{(1+{\bar{n}})^4}\Bigg )\mu +\Bigg (\frac{{\bar{n}}\eta }{(1+{\bar{n}})^2} \nonumber \\&\quad +\frac{{\bar{n}}^22\eta (1-\eta )}{(1+{\bar{n}})^3}-\frac{{\bar{n}}^2(1-\eta )^2}{(1+{\bar{n}})^4}\Bigg )^2\Bigg ](q^s)^2. \end{aligned}$$
(A7)

According to these two bounds, and in the same way, keeping terms to second order in \(\upsilon \), we can obtain an upper bound on the relative entropy,

$$\begin{aligned} \begin{aligned}&D(\rho _\mathrm{E}\parallel \sigma _\mathrm{E}) \\&\quad \le \frac{1}{\ln 2}\Bigg [\frac{{\bar{n}}^3+4{\bar{n}}^2}{(1+{\bar{n}})^4}+\frac{2{\bar{n}}\mu }{(1+{\bar{n}})^2}+\frac{(2{\bar{n}}+1)\mu ^2}{2(1+{\bar{n}})^2}\Bigg ]q^s \\&\qquad +\frac{1}{\ln 2}\Bigg [\frac{{\bar{n}}^2+{\bar{n}}+2}{(1+{\bar{n}})^2}+\frac{10{\bar{n}}^4+23{\bar{n}}^3+14{\bar{n}}^2}{(1+{\bar{n}})^4}\mu \\&\qquad +\frac{6{\bar{n}}^3+9{\bar{n}}^2+5{\bar{n}}}{(1+{\bar{n}})^3}\mu ^2\Bigg ](q^s)^2+\frac{1}{\ln 2}\Bigg [\frac{{\bar{n}}^3+4{\bar{n}}^2}{(1+{\bar{n}})^4}+\frac{2{\bar{n}}\upsilon }{(1+{\bar{n}})^2} \\&\qquad +\frac{(2{\bar{n}}+1)\upsilon ^2}{2(1+{\bar{n}})^2}\Bigg ]q^d+\frac{1}{\ln 2}\Bigg [\frac{{\bar{n}}^2+{\bar{n}}+2}{(1+{\bar{n}})^2} \\&\qquad +\frac{10{\bar{n}}^4+23{\bar{n}}^3+14{\bar{n}}^2}{(1+{\bar{n}})^4}\upsilon +\frac{6{\bar{n}}^3+9{\bar{n}}^2+5{\bar{n}}}{(1+{\bar{n}})^3}\upsilon ^2\Bigg ](q^d)^2. \end{aligned} \end{aligned}$$
(A8)

Thus, using

$$\begin{aligned} \delta \le \sqrt{\frac{1}{8}D(\rho \parallel \sigma )}=\sqrt{\frac{N}{8}D(\rho _\mathrm{E}\parallel \sigma _\mathrm{E})}, \end{aligned}$$
(A9)

the detection bias \(\delta \) finally can be bounded as

$$\begin{aligned} \begin{aligned} \delta&\le \Bigg [\Bigg (\frac{{\bar{n}}^3+4{\bar{n}}^2}{\mu (1+{\bar{n}})^4}+\frac{2{\bar{n}}}{(1+{\bar{n}})^2}+\frac{(2{\bar{n}}+1)\mu }{2(1+{\bar{n}})^2}\Bigg )\frac{N^s}{8\ln 2} \\&\quad +\Bigg (\frac{{\bar{n}}^3+4{\bar{n}}^2}{\upsilon (1+{\bar{n}})^4}+\frac{2{\bar{n}}}{(1+{\bar{n}})^2}+\frac{(2{\bar{n}}+1)\upsilon }{2(1+{\bar{n}})^2}\Bigg )\frac{N^d}{8\ln 2} \\&\quad +\Bigg (\frac{{\bar{n}}^2+{\bar{n}}+2}{\mu ^2(1+{\bar{n}})^2}+\frac{10{\bar{n}}^4+23{\bar{n}}^3+14{\bar{n}}^2}{\mu (1+{\bar{n}})^4} \\&\quad +\frac{6{\bar{n}}^3+9{\bar{n}}^2+5{\bar{n}}}{(1+{\bar{n}})^3}\Bigg )\frac{(N^s)^2}{8N\ln 2}+\Bigg (\frac{{\bar{n}}^2+{\bar{n}}+2}{\upsilon ^2(1+{\bar{n}})^2} \\&\quad +\frac{10{\bar{n}}^4+23{\bar{n}}^3+14{\bar{n}}^2}{\upsilon (1+{\bar{n}})^4}+\frac{6{\bar{n}}^3+9{\bar{n}}^2+5{\bar{n}}}{(1+{\bar{n}})^3}\Bigg )\frac{(N^d)^2}{8N\ln 2}\Bigg ]^{\frac{1}{2}}, \end{aligned} \end{aligned}$$
(A10)

where \(N^s\) and \(N^d\), respectively, denote the signal states and decoy states sent by Alice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, FZ., Liu, L., Wang, AK. et al. Practical covert quantum key distribution with decoy-state method. Quantum Inf Process 18, 95 (2019). https://doi.org/10.1007/s11128-019-2181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2181-1

Keywords

Navigation