Abstract
We theoretically present a protocol to realize the controlled phase gate with Cooper-pair box (CPB) qubits in circuit quantum electrodynamics (circuit QED) system. In this protocol, the one-dimensional transmission line resonator in circuit QED system acting as quantum data bus generates a common cavity mode and interacts with each CPB qubit. The Rabi frequencies of driven pluses can be designed with simple Gaussian or trigonometric functions by utilizing the universal SU(2) transformation. Moreover, the level configurations of CPB qubits have been reported by previous protocol (Feng and Zhang in Phys C 470:240–243, 2010). Thus, the protocol can be realized easily in experiment. In addition, the influence of various decoherence processes such as spontaneous emissions, dephasings of the CPB qubits and the decay of the cavity mode on the fidelity is discussed by numerical simulations. The results show that the protocol is robust against the decoherence and parameter variations. Therefore, the protocol may be useful for the fields of quantum computations.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lloyd, S.: Ultimate physical limits to computation. Nature (London) 406, 1047–1054 (2000)
Ng, Y.J.: Erratum: From computation to black holes and space–time foam. Phys. Rev. Lett. 86, 2946–2949 (2001)
Wang, X.G., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907–3910 (2001)
Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)
Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 41, 303–332 (1999)
Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)
Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)
Barenco, A., Bennett, C.H., DiVincenzo, R.D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)
Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)
DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)
Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf. Process. 15, 1485–1498 (2016)
Kang, Y.H., Xia, Y., Lu, P.M.: Two-photon phase gate with linear optical elements and atom-cavity system. Quantum Inf. Process. 15, 4521–4535 (2016)
Barenco, A., Deutsch, D., Ekert, A.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)
Shao, X.Q., Zhu, A.D., Zhang, S., Chung, J.S., Yeon, K.H.: Efficient scheme for implementing an N-qubit Toffoli gate by a single resonant interaction with cavity quantum electrodynamics. Phys. Rev. A 75, 034307 (2007)
Chen, Y.H., Xia, Y., Cnen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)
Su, S.L., Liang, E.J., Zhang, S., Wen, J.J., Sun, L.L., Jin, Z., Zhu, A.D.: One-step implementation of the Rydberg–Rydberg-interaction gate. Phys. Rev. A 93, 012306 (2016)
Su, S.L., Gao, Y., Liang, E.J., Zhang, S.: Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95, 022319 (2017)
Liu, B.J., Huang, Z.H., Xue, Z.Y., Zhang, X.D.: Superadiabatic holonomic quantum computation in cavity QED. Phys. Rev. A 95, 062308 (2017)
Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)
Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)
Yang, C.P., Han, S.: Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED. Phys. Rev. A 73, 032317 (2006)
Zhang, Y., Zhao, X., Zheng, Z.F., Yu, L., Su, Q.P., Yang, C.P.: Universal controlled-phase gate with cat-state qubits in circuit QED. Phys. Rev. A 96, 052317 (2017)
Ma, L.H., Kang, Y.H., Shi, Z.C., Song, J., Xia, Y.: Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Inf. Process. 17, 292–310 (2018)
Liang, Z.T., Yue, X.X., Lv, Q., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)
Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)
Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004)
Yang, C.P., Chu, S.I., Han, S.Y.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)
Wu, C.W., Han, Y., Li, H.Y., Deng, Z.J., Chen, P.X., Li, C.Z.: Fast quantum phase gate in a small-detuning circuit QED model. Phys. Rev. A 82, 014303 (2010)
Romero, G., Ballester, D., Wang, Y.M., Scarani, V., Solano, E.: Ultrafast quantum gates in circuit QED. Phys. Rev. Lett. 108, 120501 (2012)
Chen, J.W., Wei, L.F.: Deterministic implementations of quantum gates with circuit QEDs via Stark-chirped rapid adiabatic passages. Phys. Lett. A 379, 2549–2555 (2015)
Kumar, K.S., Vepsäläinen, A., Danilin, S., Paraoanu, G.S.: Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 10, 10628 (2016)
Zheng, S.B.: Unconventional geometric quantum phase gates with a cavity QED system. Phys. Rev. A 70, 052320 (2004)
Zheng, S.B.: Quantum logic gates for two atoms with a single resonant interaction. Phys. Rev. A 71, 062335 (2005)
Møller, D., Madsen, L.B., Mølmer, K.: Geometric phase gates based on stimulated Raman adiabatic passage in tripod systems. Phys. Rev. A 75, 062302 (2007)
Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)
Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14, 093040 (2012)
del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606(R) (2011)
Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)
Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)
Ibáñez, S., Martínez-Garaot, S., Chen, X., Torrontegui, E., Muga, J.G.: Shortcuts to adiabaticity for non-Hermitian systems. Phys. Rev. A 84, 023415 (2011)
Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)
Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87, 043402 (2013)
Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)
Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117–169 (2013)
Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Gué-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)
del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)
Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)
Martínez-Garaot, S., Rodriguez-Prieto, A., Muga, J.G.: Interferometer with a driven trapped ion. Phys. Rev. A 98, 043622 (2018)
Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014)
Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)
Wu, Q.C., Chen, Y.H., Huang, B.H., Song, J., Xia, Y., Zheng, S.B.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Express 24, 22847–22864 (2016)
Lu, M., Xia, Y., Shen, L.T., Song, J., Nguyen, B.A.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)
Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of W states with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)
Wu, Q.C., Chen, Y.H., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems. Phys. Rev. A 94, 053421 (2016)
Schaff, J.F., Song, X.L., Vignolo, P., Labeyrie, G.: Fast optimal transition between two equilibrium states. Phys. Rev. A 82, 033430 (2010)
Schaff, J.F., Song, X.L., Capuzzi, P., Vignolo, P., Labeyrie, G.: Shortcut to adiabaticity for an interacting Bose–Einstein condensate. Europhys. Lett. 93, 23001 (2011)
Tseng, S.Y., Chen, X.: Engineering of fast mode conversion in multimode waveguides. Opt. Lett. 37, 5118–5120 (2012)
Bowler, R., Gaebler, J., Lin, Y., Tan, T.R., Hanneke, D., Jost, J.D., Home, J.P., Leibfried, D., Wineland, D.J.: Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109, 080502 (2012)
Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109, 080501 (2012)
Demirplak, M., Rice, S.A.: Adiabatic population transfer with control fields. J. Phys. Chem. A 107, 9937 (2003)
Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008)
del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)
Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93, 052109 (2016)
Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)
Lai, Y.Z., Ling, J.Q., Müller-Kirsten, H.J.W., Zhou, J.G.: Time-dependent quantum systems and the invariant Hermitian operator. Phys. Rev. A 53, 3691–3693 (1996)
Muga, J.G., Chen, X., Ruschhaupt, A., Guéry-Odelin, D.: Frictionless dynamics of Bose-Einstein condensates under fast trap variations. J. Phys. B 42, 241001 (2009)
Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett. 116, 230503 (2016)
Wu, J.L., Ji, X., Zhang, S.: Dressed-state scheme for a fast CNOT gate. Quantum Inf. Process. 16, 294–309 (2017)
Huang, B.H., Kang, Y.H., Chen, Y.H., Wu, Q.C., Song, J., Xia, Y.: Fast quantum state engineering via universal SU(2) transformation. Phys. Rev. A 96, 022314 (2017)
Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)
Feng, Z.B., Zhang, C.L.: Scalable geometric quantum computing with Cooper-pair box qubits in circuit QED. Phys. C 470, 240–243 (2010)
Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005)
Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)
Vitanov, N.V.: Synthesis of arbitrary SU (3) transformations of atomic qutrits. Phys. Rev. A 85, 032331 (2012)
Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11374054, 11674060 and 11747011.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ma, Lh., Kang, YH., Shi, ZC. et al. Shortcuts to adiabatic for implementing controlled phase gate with Cooper-pair box qubits in circuit quantum electrodynamics system. Quantum Inf Process 18, 65 (2019). https://doi.org/10.1007/s11128-019-2184-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2184-y