Skip to main content
Log in

Quantum correlation swapping in parallel and antiparallel two-qubit mixed states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum correlations (QCs) in some mixed states are thought as important resources in performing certain quantum communication tasks. Recently, it is found that (Azam et al. in Phys Rev A 91:012304, 2015) separable two-qubit states with maximally mixed marginals can be divided into two classes, i.e., parallel and antiparallel two-qubit mixed states. Moreover, a profound difference between their QCs quantified by more probing measures is revealed. In this paper, we study the swapping of QCs in these two classes of states. To be concrete, before the swapping, the two initial states are selected as two parallel two-qubit mixed states, or two antiparallel ones, or a parallel one and an antiparallel one. It is found that, according to two QC quantifiers, i.e., OQD (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001) and LQU (Girolami et al. in Phys Rev Lett 110:240402, 2013), although QCs in the two parallel initial states are different from those in the two antiparallel initial states, the differences are eliminated after the QC swapping. However, if the initial states are selected as a parallel one and an antiparallel one, contrast to the case of two parallel ones as initial states, then after QC swapping, differences emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  Google Scholar 

  3. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Long, G.L., Liu, X.S.: Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  Google Scholar 

  8. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  9. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  10. Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  11. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  17. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  18. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  19. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  20. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  21. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  22. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  23. Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  24. Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  25. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  28. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)

    Article  Google Scholar 

  29. Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)

    Article  ADS  Google Scholar 

  30. Zhang, Z.J.: Revised definitions of quantum dissonance and quantum discord. arXiv:1011.4333 [quant-ph]

  31. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  32. Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A. 84, 062328 (2011)

    Article  ADS  Google Scholar 

  33. Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two- parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  35. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  36. Yuan, J.B., Kuang, L.M., Liao, J.Q.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B At. Mol. Opt. Phys. 43, 165503 (2010)

    Article  ADS  Google Scholar 

  37. Liu, Y., Lu, J., Zhou, L.: Quantum correlations of two qubits interacting with a macroscopic medium. Quantum Inf. Process. 14, 1343 (2015)

    Article  ADS  Google Scholar 

  38. Tang, S.Q., Yuan, J.B., Kuang, L.M., Wang, X.W.: Quantum-discord-triggered superradiance and subradiance in a system of two separated atoms. Quantum Inf. Process. 14, 2883 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  40. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  41. Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  42. Yurke, B., Stoler, D.: Einstein–Podolsky–Rosen effects from independent particle sources. Phys. Rev. Lett. 68, 1251 (1992)

    Article  ADS  Google Scholar 

  43. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  44. Zukowski, M., Zeilinger, A., et al.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  45. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  ADS  Google Scholar 

  46. Khalique, A., Sanders, B.C.: Long-distance quantum communication through any number of entanglement-swapping operations. Phys. Rev. A 90, 032304 (2014)

    Article  ADS  Google Scholar 

  47. Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    Article  ADS  Google Scholar 

  48. Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  49. Modłwska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)

    Article  ADS  Google Scholar 

  50. Roy, S.M., Deshpande, A., Sakharwade, N.: Remote tomography and entanglement swapping via von Neumann–Arthurs–Kelly interaction. Phys. Rev. A 89, 052107 (2014)

    Article  ADS  Google Scholar 

  51. Xie, C.M., Liu, Y.M., Xing, H., Chen, J.L., Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. Azam, M., Vahid, K., Laleh, M.: Comparison of parallel and antiparallel two-qubit mixed states. Phys. Rev. A 91, 012304 (2015)

    Article  MathSciNet  Google Scholar 

  53. Modlawska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 61701002, 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant Nos. 1808085MA23 and 1408085MA12 and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Liu, Y., Chen, J. et al. Quantum correlation swapping in parallel and antiparallel two-qubit mixed states. Quantum Inf Process 18, 106 (2019). https://doi.org/10.1007/s11128-019-2222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2222-9

Keywords

Navigation