Skip to main content

Advertisement

Log in

The critical detection efficiency for closing the detection loophole of some modified Bell inequalities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

As we know, the violations of Bell inequalities reveal nonlocality. On the other hand, loopholes in any Bell tests can cause the issues in the interpretation of the above conclusion, since an apparent violation of Bell inequality may not correspond to a real violation of local realism. The detection loophole, as an important example, arises when the overall detection efficiency is not larger than a certain threshold value. With the detection loophole, the above-mentioned effect can be observed in many experiments where the partial detected events can cause apparent Bell violations, while the entire ensemble cannot violate them. However, the real violations of Bell inequalities are necessary for device independence quantum information processing tasks. So, it is crucial to investigate the critical detection efficiency for closing the detection loophole of Bell inequalities. Here, by considering some novel Bell inequalities (Mironowicz and Pawłowski in Phys Rev A 88:032319, 2013), we give the critical detection efficiency for closing the detection loophole of these Bell inequalities. Furthermore, we prove the tightness of these detection efficiency bounds. That is, if detection efficiency is not larger than the critical one, we construct local hidden variable models to reproduce these violations. To sum up, if the detection efficiency of experiment exceeds the critical one derived here, the detection loophole is eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  Google Scholar 

  2. Bell, J.: On the Einstein–Podolsy–Rosen paradox. Physics 1, 195 (1964)

    Article  Google Scholar 

  3. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  4. Giustina, M., Versteegh, M.A.M., Wengerowsky, S., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  5. Rosenfeld, W., Burchardt, D., Garthoff, R., et al.: Event-ready bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017)

    Article  ADS  Google Scholar 

  6. Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Phys. Rev. D 35, 3831 (1987)

    Article  ADS  Google Scholar 

  7. Eberhard, P.H.: Background level and counter efficiencies required for a loophole free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, 747–750 (1993)

    Article  ADS  Google Scholar 

  8. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  9. Bardyn, C.E., Liew, T.C., Massar, S., Mckague, M., Scarani, V.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80, 062327 (2009)

    Article  ADS  Google Scholar 

  10. Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)

    Article  ADS  Google Scholar 

  11. Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)

    Article  ADS  Google Scholar 

  12. Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

    Article  ADS  Google Scholar 

  13. Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013)

    Article  ADS  Google Scholar 

  14. Fehr, S., Gelles, R., Schaffner, C.: Security and composability of randomness expansion from Bell inequalities. Phys. Rev. A 87, 012335 (2013)

    Article  ADS  Google Scholar 

  15. Mironowicz, P., Pawłowski, M.: Robustness of quantum-randomness expansion protocols in the presence of noise. Phys. Rev. A 88, 032319 (2013)

    Article  ADS  Google Scholar 

  16. Li, H.-W., Yin, Z.Q., Wang, S., Qian, Y.J., Chen, W., Guo, G.C., Han, Z.F.: Randomness determines practical security of BB84 quantum key distribution. Sci. Rep. 5, 16200 (2015)

    Article  ADS  Google Scholar 

  17. Li, D.-D., Wen, Q.Y., Wang, Y.K., Zhou, Y.Q., Gao, F.: Security of semi-device-independent random number expansion protocols. Sci. Rep. 5, 15543 (2015)

    Article  ADS  Google Scholar 

  18. Li, D.-D., Zhou, Y.Q., Gao, F., Li, X.H., Wen, Q.Y.: Effects of measurement dependence on generalized Clauser–Horne–Shimony–Holt Bell test in the single-run and multiple-run scenarios. Phys. Rev. A 94, 012104 (2016)

    Article  ADS  Google Scholar 

  19. Li, H.-W., Pawłowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)

    Article  ADS  Google Scholar 

  20. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)

    Article  ADS  Google Scholar 

  21. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  22. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  23. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 99, 2–8 (2018)

    Article  MathSciNet  Google Scholar 

  24. Liu, B., Gao, F., Wei, C., Wen, Q.Y.: Qkd-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)

    Article  Google Scholar 

  25. Rowe, M.A., et al.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  26. Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)

    Article  ADS  Google Scholar 

  27. Ansmann, M., et al.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  ADS  Google Scholar 

  28. Hofmann, J., et al.: Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  ADS  Google Scholar 

  29. Giustina, M., et al.: Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)

    Article  ADS  Google Scholar 

  30. Christensen, B.G., McCusker, K.T., Altepeter, J.B., et al.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)

    Article  ADS  Google Scholar 

  31. Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)

    Article  ADS  Google Scholar 

  32. Larsson, J.-Å.: Bell’s inequality and detector inefficiency. Phys. Rev. A 57, 3304 (1998)

    Article  ADS  Google Scholar 

  33. Cabello, A., Larsson, J.-Å., Rodríguez, D.: Minimum detection efficiency required for a loophole-free violation of the Braunstein–Caves chained Bell inequalities. Phys. Rev. A 79, 062109 (2009)

    Article  ADS  Google Scholar 

  34. Pütz, G., Martin, A., Gisin, N., Aktas, D., Fedrici, B., Tanzilli, S.: Quantum nonlocality with arbitrary limited detection efficiency. Phys. Rev. Lett. 116, 010401 (2016)

    Article  ADS  Google Scholar 

  35. Xiang, Y., Wang, H.-X., Hong, F.-Y.: Detection efficiency in the loophole-free violation of Svetlichny’s inequality. Phys. Rev. A 86, 034102 (2012)

    Article  ADS  Google Scholar 

  36. Cabello, A., Rodríguez, D., Villanueva, I.: Necessary and sufficient detection efficiency for the Mermin inequalities. Phys. Rev. Lett. 101, 120402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Cañas, G., Barra, J.F., Gómez, E.S., Lima, G., Sciarrino, F., Cabello, A.: Detection efficiency for loophole-free Bell tests with entangled states affected by colored noise. Phys. Rev. A 87, 012113 (2013)

    Article  ADS  Google Scholar 

  38. Massar, S., Pironio, S.: Violation of local realism versus detection efficiency. Phys. Rev. A 68, 062109 (2003)

    Article  ADS  Google Scholar 

  39. Larsson, J.-Å., Semitecolos, J.: Strict detector-efficiency bounds for n-site Clauser–Horne inequalities. Phys. Rev. A 63, 022117 (2001)

    Article  ADS  Google Scholar 

  40. Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)

    Article  ADS  Google Scholar 

  41. Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)

    Article  ADS  Google Scholar 

  42. Pál, K.F., Vértesi, T.: Closing the detection loophole in tripartite Bell tests using the W state. Phys. Rev. A 92, 022103 (2015)

    Article  ADS  Google Scholar 

  43. Pál, K.F., Vértesi, T.: Bell inequalities violated using detectors of low efficiency. Phys. Rev. A 92, 052104 (2015)

    Article  ADS  Google Scholar 

  44. Pál, K.F., Vértesi, T., Brunner, N.: Closing the detection loophole in multipartite Bell tests using Greenberger–Horne–Zeilinger states. Phys. Rev. A 86, 062111 (2012)

    Article  ADS  Google Scholar 

  45. Cao, Z., Peng, T.: Tight detection efficiency bounds of Bell tests in no-signaling theories. Phys. Rev. A. 94, 042126 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewers for their valuable suggestions. This work is supported by NSFC (Grant Nos. 61802033, 61671082, 61672110, 61572081, 61701553), Science and Technology Department of Hennan (No.172102210275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan-Dan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

5. Appendix

5. Appendix

1.1 5.1 The Proof of Lemma 1

Proof

Based on Ref. [32], it is obvious that \(p(\varLambda _{A_{j}}|\varLambda _{A_{j}B_{k}})=p(\varLambda _{B_{k}}|\varLambda _{A_{j}B_{k}})=1\).

For \(j'\ne j\), \(p(\varLambda _{A_{j'}}|\varLambda _{A_{j}B_{k}})\) is given by

$$\begin{aligned} \begin{aligned} p(\varLambda _{A_{j'}}|\varLambda _{A_{j}B_{k}})&=\frac{p(\varLambda _{A_{j'}A_{j}}|\varLambda _{B_{k}})}{p(\varLambda _{A_{j}}|\varLambda _{B_{k}})}\\&=\frac{p(\varLambda _{A_{j'}}|\varLambda _{B_{k}})+p(\varLambda _{A_{j}}|\varLambda _{B_{k}})-p(\varLambda _{A_{j'}}\cup \varLambda _{A_{j}}|\varLambda _{B_{k}})}{p(\varLambda _{A_{j}}|\varLambda _{B_{k}})}\\&\ge \frac{2\eta -1}{\eta }, \end{aligned} \end{aligned}$$
(46)

where we use the definition of detection efficiency of each party and Eq. (8). So, \(\eta \le p(\varLambda _{A_{j'}}|\varLambda _{B_{k}}), \eta \le p(\varLambda _{A_{j}}|\varLambda _{B_{k}})\).

Furthermore, when \(j'\ne j\) and \(k'\ne k\), \(p(\varLambda _{A_{j'}B_{k'}}|\varLambda _{A_{j}B_{k}})\) can be deduced by

$$\begin{aligned} \begin{aligned}&p(\varLambda _{A_{j'}B_{k'}}|\varLambda _{A_{j}B_{k}})\\&=p(\varLambda _{A_{j'}}|\varLambda _{A_{j}B_{k}})+p(\varLambda _{B_{k'}}|\varLambda _{A_{j}B_{k}}) -p(\varLambda _{A_{j'}}\cup \varLambda _{B_{k'}}|\varLambda _{A_{j}B_{k}})\\&\ge 3-\frac{2}{\eta }, \end{aligned} \end{aligned}$$
(47)

where the first line holds according to the fact \(\varLambda _{A_{j'}B_{k'}}=\varLambda _{A_{j'}}\cap \varLambda _{B_{k'}}\) and \(p(x y)=p(x)+p(y)-p(x\cup y)\), the second line holds based on Eq. (46) and \(p(\varLambda _{A_{j'}}\cup \varLambda _{B_{k'}}|\varLambda _{A_{j}B_{k}})\le 1\).

Finally, we calculate \(\delta _{I_{0}}\), without loss of generality, we assume that \(j=1, k=2\),

$$\begin{aligned}&\begin{aligned} p(\varLambda _{0}|\varLambda _{A_{1}B_{2}})&=p(\varLambda _{A_{1}A_{2}B_{2}B_{3}}|\varLambda _{A_{1}B_{2}})\\&=p(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})\\&=p(\varLambda _{A_{2}B_{3}}|\varLambda _{A_{1}B_{2}})+p(\varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})-p(\varLambda _{A_{2}B_{3}}\cup \varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})\\&\ge p(\varLambda _{A_{2}B_{3}}|\varLambda _{A_{1}B_{2}})\\&\ge 3-\frac{2}{\eta }, \end{aligned}\nonumber \\ \end{aligned}$$
(48)

where the forth line holds since \(p(\varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})=1, p(\varLambda _{A_{2}B_{3}}\cup \varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})\le 1.\) The fifth line holds based on Eq. (47). So, we get

$$\begin{aligned} \delta _{I_{0}}\ge 3-\frac{2}{\eta }. \end{aligned}$$
(49)

\(\square \)

1.2 5.2 The Proof of Lemma 2

Proof

Obviously, \(\varLambda _{0}\subset \varLambda _{A_{j}B_{k}}\), so we define \(\overline{\varLambda _{0}}=\varLambda _{A_{j}B_{k}}\setminus \varLambda _{0}\), which satisfies that

$$\begin{aligned}&\varLambda _{0}\cap \overline{\varLambda _{0}}=\emptyset , \end{aligned}$$
(50)
$$\begin{aligned}&\varLambda _{0}\cup \overline{\varLambda _{0}}=\varLambda _{A_{j}B_{k}}. \end{aligned}$$
(51)

Next, we have

$$\begin{aligned}&|E(A_{j}B_{k}|\varLambda _{A_{j}B_{k}})-\delta _{I_{0}}E(A_{j}B_{k}|\varLambda _{0})|\nonumber \\&\quad = |p(\overline{\varLambda _{0}}|\varLambda _{A_{j}B_{k}})E(A_{j}B_{k}|\overline{\varLambda _{0}}) +p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})E(A_{j}B_{k}|\varLambda _{0}) -\delta _{I_{0}}E(A_{j}B_{k}|\varLambda _{0})|\nonumber \\&\quad \le |p(\overline{\varLambda _{0}}|\varLambda _{A_{j}B_{k}})E(A_{j}B_{k}|\overline{\varLambda _{0}})| +|p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})E(A_{j}B_{k}|\varLambda _{0}) -\delta _{I_{0}}E(A_{j}B_{k}|\varLambda _{0})|\nonumber \\&\quad \le p(\overline{\varLambda _{0}}|\varLambda _{A_{j}B_{k}})E(|A_{j}B_{k}||\overline{\varLambda _{0}}) +(p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})-\delta _{I_{0}})E(|A_{j}B_{k}||\varLambda _{0})\nonumber \\&\quad \le 1-\delta _{I_{0}}, \end{aligned}$$
(52)

where \(E(|A_{j}B_{k}|)=\sum _{a,b}|ab|p(a,b|j,k)\).

The first equation holds based on \(\varLambda _{A_{j}B_{k}}=\varLambda _{0}+\overline{\varLambda _{0}}\), \(E(A_{j}B_{k}\) \(|\varLambda _{A_{j}B_{k}})=p(\overline{\varLambda _{0}}|\varLambda _{A_{j}B_{k}})\) \(E(A_{j}B_{k}|\overline{\varLambda _{0}}) +p(\varLambda _{0}|\varLambda _{A_{k}B_{k}})E(A_{j}B_{k}|\varLambda _{0})\), and the first inequality holds based on \(|x+y-z|\le |x|+|y-z|\). The second inequality holds based on \(|E(xy)|\le E(|xy|)\). The last inequality holds because that \(E(|A_{j}B_{k}||\overline{\varLambda _{0}})=1\) and \(E(|A_{j}B_{k}||\varLambda _{0})=1\) due to measurement outcomes \(a,b\in \{+1,-1\}\). \(\square \)

1.3 5.3 The Proof of (31)

Proof

Based on \(\delta _{I_{1}}=\min _{(j,k)}p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})\) for \(j, k \in \{1,2,3\}\), without loss of generality, we assume that \(j=1, k=2\),

$$\begin{aligned} \begin{aligned} p(\varLambda _{0}|\varLambda _{A_{1}B_{2}})&=p(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}\cap \varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})\\&=p(\varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})p(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}})\\&=p(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}}),\\ \end{aligned} \end{aligned}$$
(53)

where \(\varLambda _{0}=\varLambda _{A_{1}}\cap \varLambda _{A_{2}}\cap \varLambda _{A_{3}}\cap \varLambda _{B_{1}}\cap \varLambda _{B_{2}}\cap \varLambda _{B_{3}}=\varLambda _{A_{1}B_{2}}\cap \varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}\), \(p(\varLambda _{A_{1}B_{2}}|\varLambda _{A_{1}B_{2}})=1\).

Furthermore, \(P(\varLambda _{0}|\varLambda _{A_{1}B_{2}})\) can be deduced by

$$\begin{aligned}&\begin{aligned} p(\varLambda _{0}|\varLambda _{A_{1}B_{2}})&=p(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}})\\&=p(\varLambda _{A_{2}B_{3}}|\varLambda _{A_{1}B_{2}})+p(\varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}}) -p(\varLambda _{A_{2}B_{3}}\cup \varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}})\\&\ge p(\varLambda _{A_{2}B_{3}}|\varLambda _{A_{1}B_{2}})+p(\varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}})-1\\&\ge 5-\frac{4}{\eta }, \end{aligned}\nonumber \\ \end{aligned}$$
(54)

where the second line holds because \(\varLambda _{A_{2}B_{3}}\cap \varLambda _{A_{3}B_{1}}=\varLambda _{A_{2}B_{3}}+\varLambda _{A_{3}B_{1}} -\varLambda _{A_{2}B_{3}}\cup \varLambda _{A_{3}B_{1}}\), the third line holds since \(p(\varLambda _{A_{2}B_{3}}\cup \varLambda _{A_{3}B_{1}}|\varLambda _{A_{1}B_{2}})\le 1\), and then the last inequality holds based on the relation (46).

Furthermore, \(p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})\ge 5-\frac{4}{\eta }\). So, we get

$$\begin{aligned} \delta _{I_{1}}=\min _{(j,k)}p(\varLambda _{0}|\varLambda _{A_{j}B_{k}})\ge 5-\frac{4}{\eta }. \end{aligned}$$
(55)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DD., Gao, F., Cao, Y. et al. The critical detection efficiency for closing the detection loophole of some modified Bell inequalities. Quantum Inf Process 18, 123 (2019). https://doi.org/10.1007/s11128-019-2238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2238-1

Keywords

Navigation