Skip to main content
Log in

Plug-and-play unidimensional continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Numerous continuous-variable quantum key distribution (CV-QKD) schemes are based on the Gaussian modulation, which is carried out in conjugate quadratures. In order to simplify the traditional protocols, as well as improving the security of the system, we propose the plug-and-play unidimensional CV-QKD protocol, which waives the necessity of propagating a local oscillator (LO) between legitimate users and generates a real local LO for quantum measurement. The new protocol utilizes only one phase modulator rather than two, which is different from the dual-phase-modulated coherent-states protocol that we proposed earlier. The prepare-and-measure and entanglement-based schemes are described. The security of the new protocol against collective attacks in a Gaussian channel is analyzed, and the security boundary is derived, which is achieved by establishing the relationship between the uncertain parameters of the unmodulated quadrature. The performance of it is analyzed in both asymptotic and finite-size cases. Such an efficient scheme not only provides a way of removing the security loopholes associated with the transmitting LO, but also eliminates the need for one of the phase modulators, and thus will facilitate commercialization of continuous-variable quantum key distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  2. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  3. Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2014)

    Article  Google Scholar 

  4. Gessner, M., Pezzė, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94(2), 020101 (2016)

    Article  ADS  Google Scholar 

  5. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  6. Jouguet, P., Elkouss, D., Kunz-Jacques, S.: High-bit-rate continuous-variable quantum key distribution. Phys. Rev. A 90(4), 042329 (2014)

    Article  ADS  Google Scholar 

  7. Guo, Y., Liao, Q., Huang, D., Zeng, G.H.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95(4), 042326 (2017)

    Article  ADS  Google Scholar 

  8. Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238 (2003)

    Article  ADS  Google Scholar 

  9. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 73(2), 022316 (2006)

    Article  ADS  Google Scholar 

  10. Guo, Y., Liao, Q., Wang, Y.J., Huang, D., Huang, P., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95(3), 032304 (2017)

    Article  ADS  Google Scholar 

  11. Wu, X.D., Chen, F., Wu, X.H., Guo, Y.: Controlling continuous-variable quantum key distribution with entanglement in the middle using tunable linear optics cloning machines. Int. J. Theor. Phys. 56(2), 415 (2016)

    Article  MATH  Google Scholar 

  12. Lance, A.M., Symul, T., Sharma, V., Weedbrook, C., Ralph, T.C., Lam, P.K.: No-switching quantum key distribution using broadband modulated coherent light. Phys. Rev. Lett. 95(18), 180503 (2005)

    Article  ADS  Google Scholar 

  13. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    Article  ADS  Google Scholar 

  14. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  15. Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94(2), 020504 (2005)

    Article  ADS  Google Scholar 

  16. Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94(2), 020505 (2005)

    Article  ADS  Google Scholar 

  17. Lodewyck, J., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Controlling excess noise in fiber-optics continuous-variable quantum key distribution. Phys. Rev. A 72(5), 050303 (2005)

    Article  ADS  Google Scholar 

  18. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  19. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)

    Article  ADS  Google Scholar 

  20. Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective Gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101(20), 200504 (2008)

    Article  ADS  Google Scholar 

  21. Leverrier, A., Grangier, P.: Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102(18), 180504 (2009)

    Article  ADS  Google Scholar 

  22. Huang, D., Huang, P., Lin, D.K., Zeng, G.H.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6(1), 19201 (2016)

    Article  ADS  Google Scholar 

  23. Huang, D., Lin, D.K., Huang, P., Wang, C., Liu, W.Q., Fang, S.H., Zeng, G.H.: Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 23(13), 17511 (2015)

    Article  ADS  Google Scholar 

  24. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378 (2013)

    Article  ADS  Google Scholar 

  25. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack. Phys. Rev. A 87(6), 062329 (2013)

    Article  ADS  Google Scholar 

  26. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol. Phys. Rev. A 87(5), 052309 (2014)

    Article  ADS  Google Scholar 

  27. Qin, H., Kumar, R., Alléaume, R.: Saturation attack on continuous-variable quantum key distribution system. Proc. SPIE (2013). https://doi.org/10.1117/12.2028543

    Article  Google Scholar 

  28. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)

    Article  ADS  Google Scholar 

  29. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    Article  ADS  Google Scholar 

  30. Usenko, V.C., Grosshans, F.: Unidimensional continuous-variable quantum key distribution. Phys. Rev. A 92(6), 062337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. Gehring, T., Jacobsen, C.S., Andersen, U.L.: Single-quadrature continuous-variable quantum key distribution. arXiv:1507.01003v2 (2015)

  32. Usenko, V.C.: Unidimensional continuous-variable quantum key distribution using squeezed states. Phys. Rev. A 98(3), 032321 (2018)

    Article  ADS  Google Scholar 

  33. Huang, D., Huang, P., Wang, T., Li, H.S., Zhou, Y.M., Zeng, G.H.: Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)

    Article  ADS  Google Scholar 

  34. Mao, Q.P., Wang, L., Zhao, S.M.: Plug-and-play round-robin differential phase-shift quantum key distribution. Sci. Rep. 7(1), 15435 (2017)

    Article  ADS  Google Scholar 

  35. Laudenbach, F., Pacher, C., Fung, C.H.F., Poppe, A., Peev, M., Schrenk, B., Hentschel, M., Walther, P., Hübel, H.: Continuous-variable quantum key distribution with Gaussian modulation: the theory of practical implementations. arXiv:1703.09278v3 (2018)

  36. Shen, S.Y., Dai, M.W., Zheng, X.T., Sun, Q.Y., Zhu, B., Guo, G.C., Han, Z.F.: Free-space continuous-variable quantum key distribution of unidimensional Gaussian modulation using polarized coherent-states in urban environment. arXiv:1810.00408v1 (2018)

  37. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator locally in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  38. Mo, X.F., Zhu, B., Han, Z.F., Gui, Y.Z., Guo, G.C.: Faraday–Michelson system for quantum cryptography. Opt. Lett. 30(19), 2632 (2005)

    Article  ADS  Google Scholar 

  39. Legre, M., Zbinden, H., Gisin, N.: Implementation of continuous variable quantum cryptography in optical fibres using a go-and-return configuration. Quantum Inf. Comput. 6(4), 326 (2012)

    MATH  Google Scholar 

  40. Liao, Q., Guo, Y., Xie, C.L., Huang, D., Huang, P., Zeng, G.H.: Composable security of unidimensional continuous-variable quantum key distribution. Quantum Inf. Process 17(5), 113 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hillery, M.: Quantum cryptography with squeezed states. Phys. Rev. A 61(2), 022309 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  42. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tualle-Brouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 11(4), 045023 (2009)

    Article  ADS  Google Scholar 

  43. Li, Z.Y., Zhang, Y.C., Xu, F.H., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    Article  ADS  Google Scholar 

  44. Wang, X.Q., Huang, C.H.: Noise-enhanced CVQKD with untrusted source. Mod. Phys. Lett. B 31(16), 1750143 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3(7), 535 (2003)

    MathSciNet  MATH  Google Scholar 

  46. Huang, P., He, G.Q., Zeng, G.H.: Bound on noise of coherent source for secure continuous-variable quantum key distribution. Int. Theor. Phys. 52(5), 1572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hirano, T., Yamanaka, H., Ashikaga, M., Konishi, T., Namiki, R.: Quantum cryptography using pulsed homodyne detection. Phys. Rev. A 68(4), 042331 (2003)

    Article  ADS  Google Scholar 

  48. Wang, P., Wang, X.Y., Li, Y.M.: Security analysis of unidimensional continuous-variable quantum key distribution using uncertainty relations. Entropy 20, 157 (2018)

    Article  ADS  Google Scholar 

  49. Wang, X.Y., Cao, Y.X., Wang, P., Li, Y.M.: Advantages of the coherent state compared with squeezed state in unidimensional continuous variable quantum key distribution. Quantum Inf. Process 17, 344 (2018)

    Article  ADS  Google Scholar 

  50. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  51. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    Article  ADS  Google Scholar 

  52. Fossier, S., Diamanti, E., Debuisschert, T., Tualle-Brouri, R., Grangier, P.: Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers. J. Phys. B 42(11), 114014 (2009)

    Article  ADS  Google Scholar 

  53. Serafini, A., Paris, M.G.A., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Opt. B: Quantum Semiclass. Opt. 7(4), R19 (2005)

    Article  ADS  Google Scholar 

  54. Zhang, X.Y., Zhang, Y.C., Zhao, Y.J., Wang, X.Y., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. arXiv:1707.05931v2 (2017)

  55. Wang, P., Wang, X.Y., Li, J.Q., Li, Y.M.: Finite-size analysis of unidimensional continuous-variable quantum key distribution under realistic conditions. Opt. Express 25(23), 27995 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61801522, 61871407) and the Fundamental Research Funds for the Central Universities of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The derivation of the symplectic eigenvalues

To calculate the second part of (17), we need to calculate the symplectic eigenvalues of the covariance matrix \(\gamma _{BHG}^{p_A}\), which can be characterized by the following equation:

$$\begin{aligned} \gamma _{BHG}^{p_A}=\gamma _{BHG}-\sigma _{BHGA}^T(X \gamma _A X)^{MP}\sigma _{BHGA}, \end{aligned}$$
(34)

where \(\gamma _{BHG}\), \(\gamma _A\), and \(\sigma _{BHGA}\) are the submatrix of \(\gamma _{BHGA}\), and

$$\begin{aligned} \gamma _{BHGA}=\begin{bmatrix} \gamma _{BHG}&\sigma _{BHGA} \\ \sigma _{BHGA}^T&\gamma _A \end{bmatrix}, \end{aligned}$$
(35)

which can be derived by rearranging the lines and columns of matrix \(\gamma _{BAHG}\) describing the state \(\rho _{BAHG}\). Specifically, \(\gamma _{BAHG}\) can be derived by applying a beam splitter transformation \(Y^{AS}\) that models the inefficiency of the detector and acts on modes \(A_2\) and \(H_0\) [52], and it is given as follows:

$$\begin{aligned} \gamma _{BHGA}=(Y^{AS})^T[\gamma _{BA_2}\oplus \gamma _{H_0 G}]Y^{AS}, \end{aligned}$$
(36)

where \(Y^{AS}=\varPi _B \oplus Y_{A_2 H_0}^{AS} \oplus \varPi _G \), with

$$\begin{aligned} Y_{A_2 H_0}^{AS}=\begin{bmatrix} \sqrt{\eta } \cdot \varPi _2&\sqrt{1-\eta } \cdot \varPi _2 \\ -\sqrt{1-\eta } \cdot \varPi _2&\sqrt{\eta } \cdot \varPi _2 \end{bmatrix}, \end{aligned}$$
(37)

\(\gamma _{H_0 G}\) is the matrix that describes the EPR state of variance \(V_d\) used to model the detector’s electronic noise, and it is written as

$$\begin{aligned} \gamma _{H_0 G}=\begin{bmatrix} V_d \cdot \varPi _2&\sqrt{V_d^2-1} \cdot \sigma _z \\ \sqrt{V_d^2-1} \cdot \sigma _z&V_d \cdot \varPi _2 \end{bmatrix}. \end{aligned}$$
(38)

Therefore, we can calculate the symplectic eigenvalues of the covariance matrix \(\gamma _{BHG}^{p_A}\):

$$\begin{aligned} \lambda _{3,4}^2=\frac{1}{2}\left( C \pm \sqrt{C^2-4D}\right) ,\lambda _5=1, \end{aligned}$$
(39)

where

$$\begin{aligned} C= & {} \frac{A(1+v_{el})+((\varepsilon _p T_p+1)(V^2+1)+(V^2-1) T_p-A)\eta }{1+\varepsilon _p T_p \eta +(V^2-1)T_p \eta +v_{el}}, \nonumber \\ D= & {} \frac{B(1+v_{el}-\eta )+V^2 (1+\varepsilon _p T_p)\eta }{1+\varepsilon _p T_p \eta +(V^2-1) T_p \eta +v_{el}}. \end{aligned}$$
(40)

Appendix B: Physical constraint

This Eq. (25) imposes physical constraints on the possible values of \(C_x^{A_2}\) and \(V_x^{A_2}\). Such constraint can be further described by the following parabolic inequality:

$$\begin{aligned} (C_x^{A_2})^2 \le \frac{V^2-1}{V} ((1-T_p V_0)V_x^{A_2} + V_0), \end{aligned}$$
(41)

where \(V_0 = \frac{1}{1+T_p (\xi _p^2+2V\xi _p+\varepsilon _p)}\).

Considering that \(C_x^{A_2}=\sqrt{\frac{T_x (V^2-1)}{V}}, V_x^{A_2}=1+T_x \varepsilon _x\), the above parabolic inequality transforms into the following inverse function inequality:

$$\begin{aligned} \varepsilon _x \ge \frac{V_0 (T_p-1)-1}{1-T_p V_0} \cdot \frac{1}{T_x}+\frac{1}{1-T_p V_0}. \end{aligned}$$
(42)

From the mathematical relationship, we can know that the inverse function inequality is satisfied if \(\varepsilon _x \ge 0\) and \(T_x \in [0, 1]\). Therefore, Eq. (25) is true in the same condition. It means that the plug-and-play UD protocol always satisfies the requirement of the physicality of the state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ruan, X., Wu, X. et al. Plug-and-play unidimensional continuous-variable quantum key distribution. Quantum Inf Process 18, 128 (2019). https://doi.org/10.1007/s11128-019-2241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2241-6

Keywords

Navigation