Skip to main content
Log in

New quantum constacyclic codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, by investigating the Hermitian dual-containing conditions of constacyclic codes with lengths \(n=\frac{q+1}{r}(q^2+1)\) and \(n=\frac{q-1}{b}(q^2+1)\), where \(r\mid q+1\) and \(b\mid q-1\), we construct two classes of quantum codes from non-narrow-sense constacyclic codes. Most of these new quantum codes have better parameters than quantum twisted codes and quantum BCH codes, some of them are new with relatively larger distance and can not be constructed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computing memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF (4). IEEE. Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  4. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology (1997)

  5. Steane, A.M.: Enlargement of Calderbank–Shor–Steane quantum codes. IEEE. Trans. Inf. Theory 45, 2492–2495 (1999)

    Article  MathSciNet  Google Scholar 

  6. Ashikhim, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE. Trans. Inf. Theory 47, 3065–3072 (2001)

    Article  Google Scholar 

  7. Li, R., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50, 1331–1336 (2004)

    Article  MathSciNet  Google Scholar 

  8. Ketkar, A., Klappenecker, A., Kumar, S.: Nonbinary stablizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)

    Article  Google Scholar 

  9. Ling, S., Luo, J., Xing, C.: Generalization of Steane’s enlargement construction of quantum codes and applications. IEEE Trans. Inf. Theory 56, 4080–4084 (2010)

    Article  MathSciNet  Google Scholar 

  10. Grassl, M., Beth, T.: Quantum BCH codes. In: Proceedings of Xth international symposium on theoretical. electrical engineering Magdeburg, pp 207–212 (1999)

  11. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. In: Proceedings of international symposium on information theory, pp 1114–1118 (2006)

  12. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE. Trans. Inf. Theory 53, 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  13. La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  14. Li, R., Zuo, F., Liu, Y.: A study of skew symmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. 12(1), 87–89 (2011)

    Google Scholar 

  15. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual-containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 12, 0021–0035 (2013)

    MathSciNet  Google Scholar 

  16. Kai, X., Zhu, S.: Quantum negacyclic codes. Phys. Rev. A 88, 012326 (2013)

    Article  ADS  Google Scholar 

  17. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS cods. IEEE Trans. Inf. Theory 60, 2080–2086 (2014)

    Article  Google Scholar 

  18. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inf. Theory 61, 1474–1484 (2015)

    Article  MathSciNet  Google Scholar 

  19. Guardia, G.G.La: On optimal constacyclic codes. Linear Algebra Appl. 496, 594–610 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14(3), 881–889 (2015). See also arXiv:1405:5421v1

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, T., Ge, G.: Some new class of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61, 5224–5228 (2015)

    Article  ADS  Google Scholar 

  22. Liu, Y., Li, R., Lv, L., Ma, Y.: A class of constacyclic BCH codes and new quantum codes. Quantum Inf. Process. 16(3), 1–16 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yuan, J., Zhu, S., Kai, X., Li, P.: On the construction of quantum constacyclic codes. Des. Codes Cryptogr. 85(1), 179–190 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zhu, S., Sun, Z., Li, P.: A class of negacyclic BCH codes and its application to quantum codes. Des. Codes Cryptogr. 86(10), 1–27 (2018)

    Article  MathSciNet  Google Scholar 

  25. Zhang, M., Li, Z., Xing, L., Tang, N.: Construction of some new quantum BCH codes. IEEE Access 4, 36122 (2018)

    Article  Google Scholar 

  26. Song, H., Li, R., Wang, J., Liu, Y.: Two classes of BCH codes and new quantum codes. Quantum Inf. Process. 17(10), 1–24 (2018)

    Article  ADS  Google Scholar 

  27. Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24, 313–326 (2001)

    Article  MathSciNet  Google Scholar 

  28. Krishna, A., Sarwate, D.V.: Pseudo-cyclic maximum-distance separable codes. IEEE Trans. Inf. Theory 36, 880–884 (1990)

    Article  Google Scholar 

  29. Peterson, W.W., Weldon, E.J.: Error-Correcting Codes. The M.I.T. Press, Cambridge (1972)

    MATH  Google Scholar 

  30. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  31. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  32. Sloane, N.J.A., Thompson, J.G.: Cyclic self-dual codes. IEEE Trans. Inf. Theory 29, 364–366 (1983)

    Article  MathSciNet  Google Scholar 

  33. Yves Edel’s homepage. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHHrBIndex.htmlHrB

  34. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–266 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers and the Associate Editor, Prof. Michael Frey, for their constructive comments and suggestions on our manuscript, which improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China under Grant Nos. 11471011, 11801564 and Natural Science Foundation of Shaanxi under Grant No. 2017JQ1032.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, J., Liu, Y. et al. New quantum constacyclic codes. Quantum Inf Process 18, 127 (2019). https://doi.org/10.1007/s11128-019-2242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2242-5

Keywords

Navigation