Skip to main content
Log in

Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we show that current two different quantum channels of two three-qubit GHZ states and the six-qubit entangled state can be used for quantum teleportation of an arbitrary two-qubit state deterministically. Moreover, we propose two distinct protocols for quantum teleportation of an arbitrary two-qubit state within a three-qubit, by using a single-qubit measurement under the basis and also using a two-qubit projective measurement under the basis \(\{|+\rangle ,|-\rangle \}\), so as to get 16 kinds of possible measured results with equal probability of 1/4. Furthermore, the deterministic quantum teleportation of an arbitrary two-qubit states can be realized in a cavity quantum electrodynamics systems. This is unique, in that a cluster state has a maximal persistence when compared with a entangled state and it is also more robust against decoherence. Furthermore, the schemes are secure against internal and external attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  4. Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  5. Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  10. Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf. Process. 15(7), 2955–2970 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quantum Inf. Process. 12(2), 773–784 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  12. You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states. Commun. Theor. Phys. 53(5), 847 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Xiu, X.M., Li, Q.Y., Dong, L., et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14(1), 361–372 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nie, Y., Li, Y., Wang, Z.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Zhang, W., Liu, Y.M., Yin, X.F., et al.: Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs. Eur. Phys. J. D 55(1), 189–195 (2009)

    Article  ADS  Google Scholar 

  16. Dong, L., Xiu, X.M., Ren, Y.P., et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements. J. Exp. Theor. Phys. 116(1), 15–19 (2013)

    Article  ADS  Google Scholar 

  17. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156 (1999)

    Article  ADS  Google Scholar 

  20. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  21. Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)

    Article  ADS  Google Scholar 

  22. Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  24. Wang, R.J., Li, D.F., Deng, F.H.: Quantum information splitting of a two-qubit bell state using a five-qubit entangled state. Int. J. Theor. Phys. 54(9), 3229–3237 (2015)

    Article  MATH  Google Scholar 

  25. Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)

    Article  MATH  Google Scholar 

  26. Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Luo, M.X., Ma, S.Y., Chen, X.B., et al.: Hybrid quantum-state joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91(4), 042326 (2015)

    Article  ADS  Google Scholar 

  28. Wei, Y.Z., Jiang, M.: Multi-qudit state sharing via various high-dimensional Bell channels. Quantum Inf. Process. 14(3), 1091–1102 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Imamog, A., Awschalom, D.D., Burkard, G., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61802033, 61751110), Postdoctoral Research Foundation of China (2018M643453), also supported by the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (2017B030314131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-fen Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Df., Wang, Rj. & Baagyere, E. Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state. Quantum Inf Process 18, 147 (2019). https://doi.org/10.1007/s11128-019-2252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2252-3

Keywords

Navigation