Skip to main content
Log in

Controlled SWAP attack and improved quantum encryption of arbitrated quantum signature schemes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum one-time pad (QOTP) usually serves as the quantum encryption to encrypt quantum messages in arbitrated quantum signature (AQS) schemes. The original QOTP is a qubit-by-qubit encryption algorithm with message and encrypted signature always appearing in pair in AQS, which will lead to the vulnerability of the AQS scheme. By comparing the two quantum state pairs in AQS with the C-SWAP attack, it is possible for the attacker to obtain the signer’s key, which leads to the security weakness of AQS. Accordingly, we propose a new attack on AQS scheme for the first time. In order to deal with the attack on AQS scheme, QOTP must be replaced by an improved quantum encryption scheme. Based on QOTP with confusion, we proposed an improved quantum encryption scheme which can resist the attack in AQS scheme. Security analysis shows that the improved quantum encryption scheme works efficiently and securely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crandall, R., Pomerance, C.: Chapter 5, Prime Numbers: A Computational Perspective, 2nd edn. Springer, Berlin (2005)

    MATH  Google Scholar 

  2. Grover, L.K.: A fast quantum mechanical algorithm for estimating the median. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation of the unit group of a number field. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 475–480 (2005)

  5. Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number fields. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 468–474 (2005)

  6. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  7. Lamport, L.: Constructing digital signatures from a one-way function. Technical report CSL-98, SRI International (1979)

  8. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

    Article  ADS  Google Scholar 

  9. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

    Article  ADS  Google Scholar 

  10. Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91(4), 042304 (2014)

    Article  ADS  Google Scholar 

  11. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)

    Article  ADS  Google Scholar 

  12. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  13. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 23504–23516 (2010)

    Article  Google Scholar 

  15. Lee, H., Hong, C.H., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5), 295–300 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lu, X., Feng, D.G.: An arbitrated quantum message signature scheme. In: Zhang, J., He, J.H., Fu, Y. (eds.) Lecture Notes in Computer Science, vol. 3314, pp. 1054–1060. Springer, Berlin (2004)

    Google Scholar 

  17. Lu, X., Feng, D.G.: Quantum digital signature based on quantum one-way functions. In: The International Conference on Advanced Communication Technology, vol. 1, pp. 514–517. IEEE (2004)

  18. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)

    Article  ADS  Google Scholar 

  19. Yang, Y.G., Wen, Q.Y.: Erratum: arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(19), 3830 (2010)

    Article  ADS  Google Scholar 

  20. Luo, Y.P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 13(1), 113–120 (2013)

    Article  ADS  Google Scholar 

  21. Yang, Y.G., Zhou, Z., Teng, Y.W., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    Article  ADS  Google Scholar 

  22. Zou, X.F., Qiu, D.W., Mateus, P.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52(9), 3295–3305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    Article  ADS  Google Scholar 

  24. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)

    Article  ADS  Google Scholar 

  25. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89(1), 169–174 (2014)

    Google Scholar 

  27. Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 1–15 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Wang, C., Liu, J.W., Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)

    Article  ADS  Google Scholar 

  30. Zou, X.F., Qiu, D.W.: Arbitrated quantum signature schemes: attacks and security. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 48–59. Springer, Berlin (2013)

    Google Scholar 

  31. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85(5), 056301 (2012)

    Article  ADS  Google Scholar 

  32. Sun, Z.W., Du, R.G., Wang, B.H., Long, D.Y.: Improving the security of arbitrated quantum signature protocols. arXiv:1107.2459 [quant-ph] (2011)

  33. Zhang, W., Qiu, D.W., Zou, X.F., Mateus, P.: Cryptanalysis of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16(6), 150 (2017)

    Article  ADS  MATH  Google Scholar 

  34. Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12, 2071–2085 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zou, X.F., Qiu, D.W.: Attacks and improvements of QSDC schemes based on CSS codes. In: Lecture Notes in Artificial Intelligence, ICIC2011, vol. 6215, pp. 239–246 (2011)

    Chapter  Google Scholar 

  36. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 645–648 (2003)

    Article  Google Scholar 

  37. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, pp. 175–179 (1984)

  38. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  40. Gisin, N., Ribordy, G., Tillel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2001)

    Article  ADS  MATH  Google Scholar 

  41. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  42. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168 (2005)

  43. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  44. Luo, Y.P., Hwang, T.: Comment on “An arbitrated quantum signature protocol based on the chained CNOT operations encryption”. arXiv:1512.00711 [quant-ph] (2015)

Download references

Acknowledgements

This work was supported in part by Natural Science Foundation of the Education Department of Anhui Province (Grant Nos. KJ2018A0363, KJ2017A356, KJ2017A363), Quality Engineering Project of Colleges and Universities of Anhui Province (Grant No. 2017mooc235) and Anhui Provincial Natural Science Foundation of China (Grant No. 1708085MA10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Lin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, FL., Zhang, LH. & Zhang, H. Controlled SWAP attack and improved quantum encryption of arbitrated quantum signature schemes. Quantum Inf Process 18, 140 (2019). https://doi.org/10.1007/s11128-019-2265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2265-y

Keywords

Navigation