Skip to main content

Advertisement

Log in

Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum codes that can be obtained from arbitrary classical linear codes based on the entanglement-assisted stabilizer formalism. In this paper, by using generalized Reed–Solomon (GRS) codes, we construct two classes of entanglement-assisted quantum error-correcting MDS (EAQEC MDS) codes with parameters

$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a},\frac{q^2-1}{2a}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$

where q is an odd prime power of the form \(q=2am-1>3\) with \(m\ge 2\), \(1\le c\le 2a-1\) and \(c m+2\le d\le (a+\lceil \frac{c}{2}\rceil )m\), and

$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a+1},\frac{q^2-1}{2a+1}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$

where q is a prime power of the form \(q=(2a+1)m-1\), \(1\le c\le 2a\) and \(c m+2\le d\le (a+1+\lfloor \frac{c}{2}\rfloor )m\). The EAQEC MDS codes constructed have much larger minimum distance than the known quantum MDS codes with the same length, and most of them are new in the sense that the parameters of EAQEC codes are different from all the previously known ones. In particular, some of our EAQEC MDS codes have much larger d than the known ones that are of the same length and consume the same number of ebits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)

    Article  MathSciNet  Google Scholar 

  5. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)

    Article  MathSciNet  Google Scholar 

  6. Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(1–2), 21–35 (2013)

    MathSciNet  Google Scholar 

  7. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)

    Article  MathSciNet  Google Scholar 

  9. Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)

    Article  MathSciNet  Google Scholar 

  11. Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)

    Article  MathSciNet  Google Scholar 

  12. Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10(3), 1–18 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)

    Article  MathSciNet  Google Scholar 

  14. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hsich, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)

    Article  ADS  Google Scholar 

  16. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    Article  ADS  Google Scholar 

  17. Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)

    Article  ADS  Google Scholar 

  18. Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans Inf. Theory 59, 4020–4024 (2013)

    Article  MathSciNet  Google Scholar 

  19. Brun, T.A., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60, 3073–3089 (2014)

    Article  MathSciNet  Google Scholar 

  20. Lai, C.Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    Article  ADS  Google Scholar 

  22. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). (in Chinese)

    Google Scholar 

  23. Fan, J., Chen, H., Xu, J.: Construction of \(q-\)ary entanglement-assisted quantum MDS codes wit minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016)

    MathSciNet  Google Scholar 

  24. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(03), 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  26. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  27. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  28. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(2), 303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  30. Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)

    Article  MathSciNet  Google Scholar 

  31. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    Article  MathSciNet  Google Scholar 

  32. Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018). https://doi.org/10.1007/s11128-018-2044-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, The Netherlands (1977)

    MATH  Google Scholar 

  34. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixin Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported in part by the National Natural Science Foundation of China under Project 61772168, Project 61572168, Project 11871187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhu, S., Liu, L. et al. Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf Process 18, 153 (2019). https://doi.org/10.1007/s11128-019-2269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2269-7

Keywords