Abstract
Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum codes that can be obtained from arbitrary classical linear codes based on the entanglement-assisted stabilizer formalism. In this paper, by using generalized Reed–Solomon (GRS) codes, we construct two classes of entanglement-assisted quantum error-correcting MDS (EAQEC MDS) codes with parameters
where q is an odd prime power of the form \(q=2am-1>3\) with \(m\ge 2\), \(1\le c\le 2a-1\) and \(c m+2\le d\le (a+\lceil \frac{c}{2}\rceil )m\), and
where q is a prime power of the form \(q=(2a+1)m-1\), \(1\le c\le 2a\) and \(c m+2\le d\le (a+1+\lfloor \frac{c}{2}\rfloor )m\). The EAQEC MDS codes constructed have much larger minimum distance than the known quantum MDS codes with the same length, and most of them are new in the sense that the parameters of EAQEC codes are different from all the previously known ones. In particular, some of our EAQEC MDS codes have much larger d than the known ones that are of the same length and consume the same number of ebits.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)
Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996)
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(1–2), 21–35 (2013)
Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)
Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)
Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)
Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)
Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)
Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10(3), 1–18 (2017)
Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)
Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)
Hsich, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)
Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)
Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)
Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans Inf. Theory 59, 4020–4024 (2013)
Brun, T.A., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60, 3073–3089 (2014)
Lai, C.Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)
Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)
Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). (in Chinese)
Fan, J., Chen, H., Xu, J.: Construction of \(q-\)ary entanglement-assisted quantum MDS codes wit minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016)
Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)
Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(03), 1450015 (2014)
Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015)
Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)
Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(2), 303 (2017)
Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)
Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)
Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)
Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018). https://doi.org/10.1007/s11128-018-2044-1
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, The Netherlands (1977)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This research is supported in part by the National Natural Science Foundation of China under Project 61772168, Project 61572168, Project 11871187.
Rights and permissions
About this article
Cite this article
Li, L., Zhu, S., Liu, L. et al. Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes. Quantum Inf Process 18, 153 (2019). https://doi.org/10.1007/s11128-019-2269-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2269-7