Skip to main content
Log in

A new general model for quantum image histogram (QIH)

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An image histogram diagram illustrates the frequency of intensity values occurring in an image. A histogram figure has two dimensions including the x-axis and the y-axis. The color values are demonstrated by the former, and the latter indicates the number of pixels having the corresponding color values. Because quantum image processing (QImP) has been developed rapidly in recent years, in this paper, a new general approach to construct quantum image histogram (QIH) for quantum grayscale and RGB images is proposed, which is based on two kinds of quantum images named novel enhanced quantum representation of digital images (NEQR) and novel colored quantum images (NCQI). QIH manipulates two entangled qubit sequences with the aim of storing and preparing image histogram information, constructing a quantum model for illustrating image histogram. This model requires \((q+2n+1)\) qubits based on NEQR image and \(3\times (q+2n+1)\) qubits based on RGB image to construct the image histogram, when size of image is \(2^{n}\times 2^{n}\) with gray (color) range \(2^{q}\). Moreover, our constructive polynomial preparation proves that the time complexity of QIH is not more than \(O(nq2^{2n+q})\). To the best of our knowledge, this is the first general approach for encoding histogram information based on quantum RGB and grayscale images, and it may open a new window to further statistical analysis procedures related to QImP. For instance, a practical use of QIH as a strict criterion to evaluate quantum data hiding algorithms is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics, In: Proceedings of SPIE Conference of Quantum Information and Computation, Vol. 5105, 134147 (2003)

  3. Latorre, J.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  4. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 6384 (2011)

    Article  MathSciNet  Google Scholar 

  5. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Info. 17(3), 404417 (2013)

    Google Scholar 

  6. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 31033126 (2013)

    ADS  MathSciNet  Google Scholar 

  8. Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red-Green-Blue multi-channel quantum representation of digital images. Opt. Int. J. Light Electron Opt. 128, 121–132 (2017)

    Article  Google Scholar 

  9. Sang, J.Z., Wang, S., Li, Q.: A novel quantum representation for color digital images. Quantum Inf. Process. 16(2), 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Iliyasu, A., Le, P., Dong, F., Hitora, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)

    Article  MathSciNet  Google Scholar 

  11. Zhang, W., Gao, F., Liu, B., Jia, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)

    Article  MathSciNet  Google Scholar 

  12. Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(2), 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on Moir pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)

    Article  Google Scholar 

  14. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)

    Article  Google Scholar 

  15. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Heidari, S., Naseri, M.: A novel LSB based quantum image watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)

    Article  Google Scholar 

  17. Naseri, M., Heidari, S., et al.: A new secure quantum watermarking scheme. Opt. Int. J. Light. Electron Opt. 139, 77–86 (2017)

    Article  Google Scholar 

  18. Heidari, S., Gheibi, R., Houshmand, M., Nagata, K.: A robust blind quantum copyright protection method for colored images based on owner’s signature. Int. J. Theor. Phys. 56(8), 2562–2578 (2017)

    Article  Google Scholar 

  19. Yuan, S., Mao, X., Zhou, J., Wang, X.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys. 56, 1–17 (2017)

    Article  Google Scholar 

  20. Heidari, S., Naseri, M., Gheibi, R., Baghfalaki, M., Pourarian, M.R., Farouk, A.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67(6), 732–742 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 212 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Naseri, M., Heidari, S., Gheibi, R., Gong, L.H., Raji, M.A., Sadri, A.: A novel quantum binary images thinning algorithm: a quantum version of the Hilditch’s algorithm. Opt.-Int. J. Light Electron Opt. 131, 678–686 (2017)

    Article  Google Scholar 

  23. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quantum Inf. Process. 16(10), 242 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Heidari, S., Pourarian, M.R., Gheibi, R., Naseri, M., Houshmand, M.: Quantum red-green-blue image steganography. Int. J. Quantum Inf. 15(05), 1750039 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zhou, R.G., Liu, X., Zhu, C., Wei, L., Zhang, X., Ian, H.: Similarity analysis between quantum images. Quantum Inf. Process. 17(6), 121 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Luo, G., Zhou, R.G., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process. 17(11), 299 (2018)

    Article  ADS  Google Scholar 

  27. Zhou, R.G., Luo, J., Liu, X., Zhu, C., Wei, L., Zhang, X.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: A quantum algorithm of constructing image histogram. World Acad. Sci. Eng. Technol. 7(5), 610–613 (2013)

    Google Scholar 

  29. Kaur, H., Sohi, N.: A study for applications of histogram in image enhancement. Int. J. Eng. Sci. 6(6), 59–63 (2017)

    Article  Google Scholar 

  30. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lloyd, S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75(2), 346–349 (1995)

    Article  ADS  Google Scholar 

  32. Yang, G.W., Song, X.Y., Hung, W.N.N., Xie, F., Perkowski, M.A.: Group theory based synthesis of binary reversible circuits. Lect. Notes Comput. Sci. 3959, 365–374 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Acknowledging the support of Kermanshah Branch, Young Researchers and Elite club, Iran, the first author would like to thank Besharat Rabiei for her interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosayeb Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, S., Abutalib, M.M., Alkhambashi, M. et al. A new general model for quantum image histogram (QIH). Quantum Inf Process 18, 175 (2019). https://doi.org/10.1007/s11128-019-2295-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2295-5

Keywords

Navigation