Skip to main content
Log in

Semi-quantum identification

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To ensure communication security, it is necessary to verify the identities of the communicators. Two semi-quantum identification protocols with single photons involving two parties, i.e., quantum Alice and classical Bob, are presented. In the first semi-quantum identification protocol, classical Bob can authenticate quantum Alice’s identity without the help of an authenticated classical channel. As for the second one, quantum Alice can verify the identity of classical Bob without the classical measurement ability. Semi-quantum identification is significant to ensure the security of semi-quantum key distribution, semi-quantum secret sharing and so on. The proposed two identification protocols against common attacks can be employed in several existing semi-quantum key distribution protocols based on single photons to resist the man-in-the-middle attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Deng, F., Long, G.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 235–238 (2004)

    Article  Google Scholar 

  5. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  7. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  8. Biham, E., Boyer, M., Boykin, P.O., Mor, T., Roychowdhury, V.: A proof of the security of quantum key distribution. J. Cryptol. 19(4), 381–439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dusek, M., Haderka, O., Hendrych, M., Mayska, R.: Quantum identification system. Phys. Rev. A 60(1), 149–155 (1999)

    Article  ADS  Google Scholar 

  10. Zeng, G., Zhang, W.: Identity verification in quantum key distribution. Phys. Rev. A 61(2), 022303 (2000)

    Article  ADS  Google Scholar 

  11. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 052326 (2002)

    Article  ADS  Google Scholar 

  12. Zeng, G.: Quantum identity authentication without trusted-party. Acta Electron. Sin. 32(7), 1148–1151 (2004)

    Google Scholar 

  13. Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)

    Article  ADS  Google Scholar 

  14. Zhang, Z., Zeng, G., Zhou, N., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356(3), 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Yuan, H., Liu, Y., Pan, G., Zhang, G., Zhou, J., Zhang, Z.: Quantum identity authentication based on ping–pong technique without entanglements. Quantum Inf. Process. 13, 2535–2549 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chang, Y., Changchun, X., Zhang, S., Yan, L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571–4576 (2013)

    Article  Google Scholar 

  17. Shi, W., Zhou, Y., Yang, Y.: Quantum deniable authentication. Quantum Inf. Process. 13, 1501–1510 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Huang, P., Zhu, J., Yuan, L., Zeng, G.: Quantum identity authentication using Gaussian-modulated squeezed states. Int. J. Quantum Inf. 9(2), 701–721 (2011)

    Article  MATH  Google Scholar 

  19. Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 236 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hua, L., Cai, Q.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)

    Article  MATH  Google Scholar 

  22. Tan, Y., Hua, L., Cai, Q.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 1767–1787 (2009)

    Article  Google Scholar 

  23. Boyer, M., Kenigsberg, D., Mor, T.: Comment on “Quantum key distribution with classical Bob’’ reply. Phys. Rev. Lett. 102(9), 098902 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 295 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. In: Quantum Computation and Quantum Information Theory: Reprint Volume with Introductory Notes for ISI TMR Network School, pp. 235–274 (2010)

  26. Zou, X., Qiu, D., Li, L., Lihua, W., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 1744–1747 (2009)

    Article  Google Scholar 

  27. Boyer, M., Mor, Tl: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 1744–1747 (2010)

    Google Scholar 

  28. Zou, X., Qiu, D., Li, L., Lihua, W., Li, L.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states’”. Phys. Rev. A 83(4), 1744–1747 (2010)

    Google Scholar 

  29. Boyer, M., Mor, T.: On the robustness of quantum key distribution with classical Alice (photons-based protocol). In: Proceedings of the Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies (ICQNM2015), Venice, Italy, pp. 29–34 (2015)

  30. Zhang, X., Gong, W., Tan, Y., Ren, Z., Guo, X.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)

    Article  ADS  Google Scholar 

  31. Wang, J., Zhang, S., Zhang, Q., Tang, C.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301–100304 (2011)

    Article  ADS  Google Scholar 

  32. Kunfei, Y., Yang, C., Liao, C., Hwang, T.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Li, C., Kunfei, Y., Kao, S., Hwang, T.: Authenticated semi-quantum key distributions without classical channel. Quantum Inf. Process. 15(7), 2881–2893 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 16(1), 18 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zou, X., Qiu, D., Zhang, S., Mateus, P.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement. Ann. Phys. 530, 1700206 (2018)

    Article  MathSciNet  Google Scholar 

  37. He, J., Li, Q., Wu, C., Chan, W., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. (2018). https://doi.org/10.1142/S0219749918500120

    Article  MATH  Google Scholar 

  38. Zhang, M., Li, H., Peng, J., Feng, X.: Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel. Int. J. Theor. Phys. 56(8), 1–12 (2017)

    MATH  Google Scholar 

  39. Boyer, M., Katz, M., Liss, R., Mor, T.: Experimentally feasible protocol for semiquantum key distribution. Phys. Rev. A 96, 62335 (2017)

    Article  ADS  Google Scholar 

  40. Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Krawec, W.O.: Mediated semi-quantum key distribution. Phys. Rev. A 91(3), 032323 (2014)

    Article  ADS  Google Scholar 

  42. Krawec, W.O.: Security proof of a semi-quantum key distribution protocol. In: Proceedings of 2015 IEEE International Symposium on Information Theory (ISIT2015), Hongkong, China, pp. 686–690 (2015)

  43. Krawec, W.O.: Security of a semi-quantum protocol where reflections contribute to the secret key. Quantum Inf. Process. 15(5), 2067–2090 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Wang, X.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A 72, 049908 (2005)

    Article  ADS  Google Scholar 

  45. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  46. Guo, H., Li, Z., Peng, X.: Quantum Cryptography. National Defense Industry Press, Beijing (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205, 61561033 and 61462061), the China Scholarship Council (Grant No. 201606825042), the Department of Human Resources and Social security of Jiangxi Province, the Major Discipline Academic and Technical Leader Training Plan Project of Jiangxi Province (Grant No. 20162BCB22011), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Zhu, KN., Bi, W. et al. Semi-quantum identification. Quantum Inf Process 18, 197 (2019). https://doi.org/10.1007/s11128-019-2308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2308-4

Keywords

Navigation