Skip to main content
Log in

On the quantum adiabatic evolution with the most general system Hamiltonian

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the problem that when quantum adiabatic evolution with the most general form of system Hamiltonian will get failed. Here the most general form means that the initial and final Hamiltonians are just designed according to the adiabatic theorem in quantum mechanics. As we will see, even in this most general model of quantum adiabatic evolution, it still exists the possibility that the quantum adiabatic computation can fail totally if some condition is satisfied, which implies the time complexity of the quantum algorithm is infinity. That is, here we propose a rather general criterion for judging whether a quantum adiabatic evolution is successful. This result largely extends the authors’ previous research on this topic, and it may be seen as a further important clue for us when designing quantum algorithms in the framework of adiabatic evolution for some practical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007)

    Article  MathSciNet  Google Scholar 

  3. Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99, 070502 (2007)

    Article  ADS  Google Scholar 

  4. Nagaj, D., Mozes, S.: New construction for a QMA complete three-local Hamiltonian. J. Math. Phys. 48, 072104 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Nagaj, D.: Fast universal quantum computation with railroad-switch local Hamiltonians. J. Math. Phys. 51, 062201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. Breuckmann, N.P., Terhal, B.M.: Space-time circuit-to-Hamiltonian construction and its applications. J. Phys. A Math. Theor. 47, 195304 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gosset, D., Terhal, B.M., Vershynina, A.: Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction. Phys. Rev. Lett. 114, 140501 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lloyd, S., Terhal, B.M.: Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions. New J. Phys. 18, 023042 (2016)

    Article  ADS  Google Scholar 

  9. Bausch, J., Crosson, E.: Analysis and limitations of modified circuit-to-Hamiltonian constructions. Quantum 2, 94 (2018)

    Article  Google Scholar 

  10. Žnidarič, M., Horvat, M.: Exponential complexity of an adiabatic algorithm for an NP-complete problem. Phys. Rev. A 73, 022329 (2006)

    Article  ADS  Google Scholar 

  11. Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. USA 107, 12446–12450 (2010)

    Article  ADS  Google Scholar 

  12. Hen, I., Young, A.P.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84, 061152 (2011)

    Article  ADS  Google Scholar 

  13. Dickson, N.G., Amin, M.H.: Algorithmic approach to adiabatic quantum optimization. Phys. Rev. A 85, 032303 (2012)

    Article  ADS  Google Scholar 

  14. Zhuang, Q.T.: Increase of degeneracy improves the performance of the quantum adiabatic algorithm. Phys. Rev. A 90, 052317 (2014)

    Article  ADS  Google Scholar 

  15. Zeng, L.S., Zhang, J., Sarovar, M.: Schedule path optimization for adiabatic quantum computing and optimization. J. Phys. A Math. Theor. 49, 165305 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bringewatt, J., Dorland, W., Jordan, S.P., Mink, A.: Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians. Phys. Rev. A 97, 022323 (2018)

    Article  ADS  Google Scholar 

  17. Mahasinghe, A., Hua, R., Dinneen, M.J., Goyal, R.: Solving the Hamiltonian cycle problem using a quantum computer. In: Proceedings of the Australasian Computer Science Week Multiconference (ACSW’19) (2019)

  18. Messiah, A.: Quantum Mechanics. Dover, New York (1999)

    MATH  Google Scholar 

  19. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  20. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106

  21. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  22. Das, S., Kobes, R., Kunstatter, G.: Energy and efficiency of adiabatic quantum search algorithms. J. Phys. A Math. Gen. 36, 2839–2845 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sun, J., Lu, S., Liu, F.: Speedup in adiabatic evolution based quantum algorithms. Sci. China Phys. Mech. Astron. 55, 1630–1634 (2012)

    Article  ADS  Google Scholar 

  24. Sun, J., Lu, S., Liu, F.: On the general class of models of adiabatic evolution. Open Syst. Inf. Dyn. 23, 1650016 (2016)

    Article  MathSciNet  Google Scholar 

  25. Sun, J., Lu, S.: On the adiabatic evolution of one-dimensional projector Hamiltonians. Int. J. Quantum Inf. 10, 1250046 (2012)

    Article  MathSciNet  Google Scholar 

  26. Sun, J., Lu, S., Braunstein, S.L.: On models of nonlinear evolution paths in adiabatic quantum algorithms. Commun. Theor. Phys. 59, 22–26 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Jie Sun gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2017M620322, the support from the National Natural Science Foundation of China under Grant No. 61402188, the fund by Priority for the Postdoctoral Scientific and Technological Program of Hubei Province in 2017, and the Seed Foundation of Huazhong University of Science and Technology under Grant No. 2017KFYXJJ070. This work is also supported by the Science and Technology Program of Shenzhen of China under Grant Nos. JCYJ 20170818160208570 and JCYJ 20180306124612893. Finally, the authors should appreciate greatly the anonymous reviewer for helpful comments and advice on the revision of the paper which make it be in its present form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songfeng Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Lu, S. On the quantum adiabatic evolution with the most general system Hamiltonian. Quantum Inf Process 18, 211 (2019). https://doi.org/10.1007/s11128-019-2313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2313-7

Keywords

Navigation