Skip to main content
Log in

Quantitative analysis of decoherence of entangled microwave signals in free space

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entangled microwave signals are the new quantum information resource of microwave frequency. Based on the evolution model of two-mode squeezed vacuum state with Fokker–Planck equation, we consider the absorption of atmospheric gas and the attenuation of cloud, rain and fog in the typical environment, and then investigate decoherence of entangled microwave signals. To quantify the entanglement degree using logarithmic negativity, we quantitatively discuss the relation of the entanglement degree and propagation distance and estimate the effective operating distance of entangled microwave signals in free space. Results demonstrate that entangled microwave signals can still maintain a higher entanglement degree when the propagation distance is in the order of 10 km, which prove the availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–931 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nakamura, Y., Yamamoto, T.: Breakthroughs in photonics 2012: breakthroughs in microwave quantum photonics in superconducting circuits. IEEE Photonics J. 5(2), 0701406 (2013)

    Article  Google Scholar 

  3. Roch, N., Flurin, E., Nguyen, F., Morfin, P., Campagne-Ibarcq, P., Devoret, M.H., Huard, B.: Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit. Phys. Rev. Lett. 108(14), 147701 (2012)

    Article  ADS  Google Scholar 

  4. Beltran, M.A.C.: Development of a Josephson parametric amplifier for the preparation and detection of nonclassical states of microwave fields. University of Colorado, Boulder (2010)

  5. Yamamoto, T., Inomata, K., Watanabe, M., Matsuba, K., Miyazaki, T., Oliver, W.D., Nakamura, Y., Tsai, J.S.: Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93(4), 042510 (2008)

    Article  ADS  Google Scholar 

  6. Zhong, L., Menzel, E.P., Di, Candia R., Eder, P., Ihmig, M., Baust, A., Haeberlein, M., Hoffmann, E., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Deppe, F., Marx, A., Gross, R.: Squeezing with a flux-driven Josephson parametric amplifier. New J. Phys. 15(12), 125013–125036 (2013)

    Article  ADS  Google Scholar 

  7. Eichler, C., Bozyigit, D., Lang, C., Baur, M., Steffen, L., Fink, J.M., Filipp, S., Wallraff, A.: Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107(11), 113601 (2011)

    Article  ADS  Google Scholar 

  8. Menzel, E.P., Candia, R.D., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109(25), 250502 (2012)

    Article  ADS  Google Scholar 

  9. Flurin, E., Roch, N., Mallet, F., Devoret, M.H., Huard, B.: Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109(18), 183901 (2012)

    Article  ADS  Google Scholar 

  10. Su, X.L., Jia, X.J., Ch, Peng K.: Quantum information processing with continuous variables based on quantum state of optical field. Prog. Phys. 36(4), 101–117 (2016)

    Google Scholar 

  11. Huard, B.: Quantum microwaves. C. R. Phys. 17, 679–683 (2016)

    Article  ADS  Google Scholar 

  12. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114(8), 080503 (2015)

    Article  ADS  Google Scholar 

  13. Li, X., Wu, D.W., Wei, T.L., Miao, Q., Zhu, H.N., Yang, C.Y.: A radio navigation angle measurement method with entangled microwave signals. AIP Adv. 8(6), 065217 (2018)

    Article  ADS  Google Scholar 

  14. Li, X., Wu, D.W., Miao, Q., Zhu, H.N., Wei, T.L.: A navigation ranging scheme with true random entangled microwave signals. IEEE Photonics J. 10(6), 6101107 (2018)

    Google Scholar 

  15. Flurin, E.: The Josephson mixer: a Swiss army knife for microwave quantum optics. PSL Research University, Paris (2014)

  16. Braunstein, S.L., Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513–577 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Prauzner-Bechcicki, J.S.: Two-mode squeezed vacuum state coupled to the common thermal reservoir. J. Phys. A 37(15), L173–L181 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Liu, K.L., Goan, H.S.: Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Phys. Rev. A 76(2), 022312 (2007)

    Article  ADS  Google Scholar 

  19. Hiroshima, T.: Decoherence and entanglement in two-mode squeezed vacuum states. Phys. Rev. A 63(2), 022305 (2001)

    Article  ADS  Google Scholar 

  20. Ren, Y.C., Wang, S., Fan, H.Y., Chen, F.: Ket–Bra entangled state method for solving master equation of finite-level system. Quantum Inf. Process. 16, 270 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xue, S., Petersen, L.R.: Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green’s function-based root locus approach. Quantum Inf. Process. 15(2), 1001–1018 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable-entanglement dynamics in structured reservoirs. Phys. Rev. A 80(6), 062324 (2009)

    Article  ADS  Google Scholar 

  23. Xiang, S.H., Song, K.H., Wen, W., Shi, Z.G.: Quantum entanglement and nonlocality properties of two-mode squeezed thermal states in a common-reservoir model. Commun. Theor. Phys. 55(2), 232–238 (2011)

    Article  ADS  Google Scholar 

  24. Xie, Y.X.: Principle and Application of Radio Wave Propagation, p. 21. Posts & Telecom Press, Beijing (2008)

    Google Scholar 

  25. Mao, J.J.: Microwave Technique and Antenna, p. 409. Science Press, Beijing (2006)

    Google Scholar 

  26. Menzel, E.P.: Propagating quantum microwaves: dual-path state reconstruction and path entanglement. Technical University Munich, Munich (2013)

  27. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 61573372, 61603413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-wei Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we provide the exact derivation and calculation process of logarithmic negativity given in Eq. (9).

Substituting the two evolutive formulas \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) \) and \( \sinh (2r)e^{ - \gamma t} \) into Eq. (8),

$$ \begin{aligned} \lambda_{1} & = \frac{1}{2}\left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} } \right] \\ \lambda_{1} & = \frac{1}{2}\left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} } \right] \\ \end{aligned} $$

Then, substituting them into Eq. (7),

When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} \ge 1 \),

$$ F(\lambda_{1} ) = 0 $$

When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} < 1 \),

$$ F(\lambda_{1} ) = - \log_{2} \left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} } \right] $$

When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} \ge 1 \),

$$ F(\lambda_{2} ) = 0 $$

When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} < 1 \),

$$ F(\lambda_{2} ) = - \log_{2} \left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} } \right] $$

Due to \( \sinh (2r)e^{ - \gamma t} \) is always greater than 0, we have

$$ \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} > \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} $$

Then, substituting \( F(\lambda_{1} ) \) and \( F(\lambda_{2} ) \) into Eq. (6),

  1. 1.

    When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} \ge 1 \),

    $$ E(\rho ) = 0 $$
  2. 2.

    When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} \ge 1 \), \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} < 1 \), and

    $$ E(\rho ) = - \log_{2} \left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} } \right] $$
  3. 3.

    When \( \cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} < 1 \),

    $$ \begin{aligned} & E(\rho ) = - \log_{2} \left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) + \sinh (2r)e^{ - \gamma t} } \right] \\ & \quad \quad \quad - \,\log_{2} \left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} ) - \sinh (2r)e^{ - \gamma t} } \right] \\ & \quad \quad \quad = - \log_{2} \left\{ {\left[ {\cosh (2r)e^{ - \gamma t} + (2\bar{N} + 1)(1 - e^{ - \gamma t} )} \right]^{2} - \left[ {\sinh (2r)e^{ - \gamma t} } \right]^{2} } \right\} \\ \end{aligned} $$

Combine the above three situations, Eq. (9) is final logarithmic negativity expression.

As results of the given \( r \), \( \cosh (2r) \approx \sinh (2r) \). Therefore, calculation can be simplified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Dw., Yang, Cy. et al. Quantitative analysis of decoherence of entangled microwave signals in free space. Quantum Inf Process 18, 200 (2019). https://doi.org/10.1007/s11128-019-2321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2321-7

Keywords

Navigation