Skip to main content
Log in

The study of interference effect in a globally coupled quantum network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the quantum interference effect in a globally coupled quantum network that is composed of N lowly dissipative optical cavities and a highly dissipative cavity. After effectively eliminating the highly dissipative mode, we obtain the effective master equation including some additional terms. In particular, these additional terms can explain the interference effect between any two different coupling paths of the quantum network. To demonstrate the practical application of the interference effect, we consider the manipulation of heat flows as an example. The results show that the heat currents can be effectively dominated by adjusting interference angles and amplitudes, and thus the function of some thermal devices can be achieved, such as the thermal diode, thermal switch, and thermal modulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sipahigil, A., Evans, R., Sukachev, D., Burek, M., Borregaard, J., Bhaskar, M., Nguyen, C., Pacheco, J., Atikian, H., Meuwly, C., Camacho, R., Jelezko, F., Bielejec, E., Park, H., Lonar, M., Lukin, M.: An integrated diamond nanophotonics platform for quantum-optical networks. Science 354(6314), 847–850 (2016)

    Article  ADS  Google Scholar 

  2. Faccin, M., Johnson, T., Biamonte, J., Kais, S., Migdał, P.: Degree distribution in quantum walks on complex networks. Phys. Rev. X 3, 041007 (2013)

    Google Scholar 

  3. Reiserer, A., Rempe, G.: Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015)

    Article  ADS  Google Scholar 

  4. Rezai, M., Wrachtrup, J., Gerhardt, I.: Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018)

    Google Scholar 

  5. Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)

    Article  ADS  Google Scholar 

  6. Mahmoodian, S., Lodahl, P., Sørensen, A.S.: Quantum networks with chiral-light-matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016)

    Article  ADS  Google Scholar 

  7. Lee, C.M., Hoban, M.J.: Towards device-independent information processing on general quantum networks. Phys. Rev. Lett. 120, 020504 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. Valdez, M.A., Jaschke, D., Vargas, D.L., Carr, L.D.: Quantifying complexity in quantum phase transitions via mutual information complex networks. Phys. Rev. Lett. 119, 225301 (2017)

    Article  ADS  Google Scholar 

  9. Viciani, S., Lima, M., Bellini, M., Caruso, F.: Observation of noise-assisted transport in an all-optical cavity-based network. Phys. Rev. Lett. 115, 083601 (2015)

    Article  ADS  Google Scholar 

  10. Strogatz, S.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  ADS  Google Scholar 

  11. Roy, R., Murphy, T.W., Maier, T.D., Gills, Z., Hunt, E.R.: Dynamical control of a chaotic laser: experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68, 1259–1262 (1992)

    Article  ADS  Google Scholar 

  12. Böhm, F., Zakharova, A., Schöll, E., Lüdge, K.: Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91, 040901 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhong, T., Kindem, J.M., Bartholomew, J.G., Rochman, J., Craiciu, I., Miyazono, E., Bettinelli, M., Cavalli, E., Verma, V., Nam, S.W., Marsili, F., Shaw, M.D., Beyer, A.D., Faraon, A.: Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357(6358), 1392–1395 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Randall, J., Lawrence, A.M., Webster, S.C., Weidt, S., Vitanov, N.V., Hensinger, W.K.: Generation of high-fidelity quantum control methods for multilevel systems. Phys. Rev. A 98, 043414 (2018)

    Article  ADS  Google Scholar 

  15. Wen, Y.H., Kuzucu, O., Fridman, M., Gaeta, A.L., Luo, L.W., Lipson, M.: All-optical control of an individual resonance in a silicon microresonator. Phys. Rev. Lett. 108, 223907 (2012)

    Article  ADS  Google Scholar 

  16. Zeng, Y.X., Gebremariam, T., Ding, M.S., Li, C.: The influence of non-Markovian characters on quantum adiabatic evolution. Ann. Phys. (Berlin) 531(1), 1970010 (2019)

    Article  ADS  Google Scholar 

  17. Zeng, Y.X., Gebremariam, T., Ding, M.S., Li, C.: Quantum optical diode based on Lyapunov control in a superconducting system. J. Opt. Soc. Am. B 35(9), 2334–2341 (2018)

    Article  ADS  Google Scholar 

  18. Hou, S.C., Khan, M.A., Yi, X.X., Dong, D., Petersen, I.R.: Optimal Lyapunov-based quantum control for quantum systems. Phys. Rev. A 86, 022321 (2012)

    Article  ADS  Google Scholar 

  19. Felbacq, D., Rousseau, E.: All-optical photonic band control in a quantum metamaterial. Ann. Phys. (Berlin) 529(9), 1600371 (2016)

    Article  ADS  Google Scholar 

  20. Li, J., Qu, Y., Yu, R., Wu, Y.: Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Phys. Rev. A 97, 023826 (2018)

    Article  ADS  Google Scholar 

  21. Bin, Q., Lü, X.Y., Bin, S.W., Wu, Y.: Two-photon blockade in a cascaded cavity-quantum-electrodynamics system. Phys. Rev. A 98, 043858 (2018)

    Article  ADS  Google Scholar 

  22. He, L., Lan, P., Zhai, C., Li, Y., Wang, Z., Zhang, Q., Lu, P.: Quantum path interference in the wavelength-dependent below-threshold harmonic generation. Phys. Rev. A 91, 023428 (2015)

    Article  ADS  Google Scholar 

  23. Ma, L.H., Kang, Y.H., Shi, Z.C., Song, J., Xia, Y.: Shortcuts to adiabatic for implementing controlled-not gate with superconducting quantum interference device qubits. Quantum Inf. Process. 17, 292 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zhou, Z.Y., Liu, S.K., Liu, S.L., Li, Y.H., Li, Y., Yang, C., Xu, Z.H., Guo, G.C., Shi, B.S.: Revealing the behavior of photons in a birefringent interferometer. Phys. Rev. Lett. 120, 263601 (2018)

    Article  ADS  Google Scholar 

  25. Sahu, P.P.: Thermooptic two-mode interference device for reconfigurable quantum optic circuits Quantum Inf. Process. 17, 150 (2018)

    Article  Google Scholar 

  26. Shao, X.Q., Zheng, T.Y., Zhang, S.: Robust preparation of four-qubit decoherence-free states for superconducting quantum interference devices against collective amplitude damping. Quantum Inf. Process. 12, 3383–3393 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Haug, T., Tan, J., Theng, M., Dumke, R., Kwek, L.C., Amico, L.: Readout of the atomtronic quantum interference device. Phys. Rev. A 97, 013633 (2018)

    Article  ADS  Google Scholar 

  28. Li, Yq, Xiao, M.: Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A 51, 4959–4962 (1995)

    Article  ADS  Google Scholar 

  29. Long, J., Ku, H.S., Wu, X., Gu, X., Lake, R.E., Bal, M., Liu, Yx, Pappas, D.P.: Electromagnetically induced transparency in circuitquantum electrodynamics with nested polariton states. Phys. Rev. Lett. 120, 083602 (2018)

    Article  ADS  Google Scholar 

  30. Guo, Y., Li, K., Nie, W., Li, Y.: Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Phys. Rev. A 90, 053841 (2014)

    Article  ADS  Google Scholar 

  31. Si, L.G., Xiong, H., Zubairy, M.S., Wu, Y.: Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Phys. Rev. A 95, 033803 (2017)

    Article  ADS  Google Scholar 

  32. Qian, Z., Zhao, M.M., Hou, B.P., Zhao, Y.H.: Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems. Opt. Express 25(26), 33097–33112 (2017)

    Article  ADS  Google Scholar 

  33. Wu, S.C., Qin, L.G., Jing, J., Yan, T.M., Lu, J., Wang, Z.Y.: Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. Phys. Rev. A 98, 013807 (2018)

    Article  ADS  Google Scholar 

  34. Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabelli, J., Estève, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)

    Article  ADS  Google Scholar 

  35. Deng, W.W., Li, G.X., Qin, H.: Photon blockade via quantum interference in a strong coupling qubit-cavity system. Opt. Express 25(6), 6767–6783 (2017)

    Article  ADS  Google Scholar 

  36. Gerace, D., Savona, V.: Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803 (2014)

    Article  ADS  Google Scholar 

  37. Turek, Y., Li, Y., Sun, C.: Electromagnetically-induced-transparency-like phenomenon with two atomic ensembles in a cavity. Phys. Rev. A 88, 053827 (2013)

    Article  ADS  Google Scholar 

  38. Wang, X.Q., Xu, Y., Huang, X.H., Bian, X.B.: Interference between inter- and intraband currents in high-order harmonic generation in solids. Phys. Rev. A 98, 023427 (2018)

    Article  ADS  Google Scholar 

  39. Suárez, N., Chacón, A., Pérez-Hernández, J.A., Biegert, J., Lewenstein, M., Ciappina, M.F.: High-order-harmonic generation in atomic and molecular systems. Phys. Rev. A 95, 033415 (2017)

    Article  ADS  Google Scholar 

  40. Carmichael, H.: Statistical Methods in Quantum Optics 2: Non-classical Fields. Springer, Berlin (2008)

    Book  Google Scholar 

  41. Carmichael, H.J.: Statistical Methods in Quantum Optics 1. Springer, Berlin (1999)

    Book  Google Scholar 

  42. Lee, J.H., Seok, H.: Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime. Phys. Rev. A 97, 013805 (2018)

    Article  ADS  Google Scholar 

  43. Liu, Y.C., Luan, X., Li, H.K., Gong, Q., Wong, C.W., Xiao, Y.F.: Coherent polariton dynamics in coupled highly dissipative cavities. Phys. Rev. Lett. 112, 213602 (2014)

    Article  ADS  Google Scholar 

  44. Nunnenkamp, A., Sudhir, V., Feofanov, A.K., Roulet, A., Kippenberg, T.J.: Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics. Phys. Rev. Lett. 113, 023604 (2014)

    Article  ADS  Google Scholar 

  45. Krauter, H., Muschik, C.A., Jensen, K., Wasilewski, W., Petersen, J.M., Cirac, J.I., Polzik, E.S.: Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011)

    Article  ADS  Google Scholar 

  46. Hoffmann, K.H.: Quantum thermodynamics. Ann. Phys. (Berlin) 57(4), 545–579 (1989)

    Google Scholar 

  47. Vinjanampathy, S., Anders, J.: Quantum Thermodynamics. Springer, Berlin (2009)

    Google Scholar 

  48. Karimi, B., Pekola, J.P.: Correlated versus uncorrelated noise acting on a quantum refrigerator. Phys. Rev. B 96, 115408 (2017)

    Article  ADS  Google Scholar 

  49. Tan, K.Y., Partanen, M., Lake, R.E., Govenius, J., Masuda, S., Mttnen, M.: Quantum-circuit refrigerator. Nat. Commun. 8, 15189 (2017)

    Article  ADS  Google Scholar 

  50. Yu, C.S., Zhu, Qy: Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Phys. Rev. E 90, 052142 (2014)

    Article  ADS  Google Scholar 

  51. Guo, Bq, Liu, T., Yu, Cs: Quantum thermal transistor based on qubit-qutrit coupling. Phys. Rev. E 98, 022118 (2018)

    Article  ADS  Google Scholar 

  52. Joulain, K., Drevillon, J., Ezzahri, Y., Ordonez-Miranda, J.: Quantum thermal transistor. Phys. Rev. Lett. 116, 200601 (2016)

    Article  ADS  Google Scholar 

  53. Wang, L., Li, B.: Thermal logic gates: computation with phonons. Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  54. Li, N., Zhan, F., Hänggi, P., Li, B.: Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor. Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  55. Ordonez-Miranda, J., Ezzahri, Y., Joulain, K.: Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 95, 022128 (2017)

    Article  ADS  Google Scholar 

  56. de Vries, W., van der Meer, T.H.: Application of peltier thermal diodes in a magnetocaloric heat pump. Appl. Therm. Eng. 111, 377–386 (2017)

    Article  Google Scholar 

  57. Wehmeyer, G., Yabuki, T., Monachon, C., Wu, J., Dames, C.: Thermal diodes, regulators, and switches: physical mechanisms and potential applications. Appl. Phys. Rev. 4(4), 041304 (2017)

    Article  ADS  Google Scholar 

  58. Sothmann, B., Giazotto, F., Hankiewicz, E.M.: High-efficiency thermal switch based on topological josephson junctions. New J. Phys. 19(2), 023056 (2017)

    Article  ADS  Google Scholar 

  59. Guarcello, C., Solinas, P., Di Ventra, M., Giazotto, F.: Hysteretic superconducting heat-flux quantum modulator. Phys. Rev. Appl. 7, 044021 (2017)

    Article  ADS  Google Scholar 

  60. Xuereb, A., Imparato, A., Dantan, A.: Heat transport in harmonic oscillator systems with thermal baths: application to optomechanical arrays. New J. Phys. 17(5), 055013 (2015)

    Article  ADS  Google Scholar 

  61. Irvine, W.T.M., Hennessy, K., Bouwmeester, D.: Strong coupling between single photons in semiconductor microcavities. Phys. Rev. Lett. 96, 057405 (2006)

    Article  ADS  Google Scholar 

  62. Liu, Y.C., Luan, X., Li, H.K., Gong, Q., Wong, C.W., Xiao, Y.F.: Vacuum Rabi Oscillation in Coupled Highly-Dissipative Cavity Quantum Electrodynamics. Optical Society of America, Washington (2014)

    Book  Google Scholar 

  63. Carusotto, I., La Rocca, G.C.: Two-photon rabi splitting and optical stark effect in semiconductor microcavities. Phys. Rev. B 60, 4907–4919 (1999)

    Article  ADS  Google Scholar 

  64. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Quantum optical diode with semiconductor microcavities. Phys. Rev. A 90, 023849 (2014)

    Article  ADS  Google Scholar 

  65. Lien, Y.H., Barontini, G., Scheucher, M., Mergenthaler, M., Goldwin, J., Hinds, E.: Observing coherence effects in an overdamped quantum system. Nat. Commun. 7, 13933 (2016)

    Article  ADS  Google Scholar 

  66. Agarwal, G.S.: Strong coupling induced splitting of dynamical response of the optical parametric oscillator. Phys. Rev. Lett. 73, 522–524 (1994)

    Article  ADS  Google Scholar 

  67. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  68. Meystre, P., Iii, M.S., Meystre, P., Iii, M.S., Meystre, P., Iii, M.S., Meystre, P., Iii, M.S., Meystre, P., Iii, M.S.: Elements of quantum optics. Opt. Acta 38(6), 1210–1211 (1991)

    MATH  Google Scholar 

  69. Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(11), 113019 (2008)

    Article  ADS  Google Scholar 

  70. Ferretti, S., Gerace, D.: Single-photon nonlinear optics with Kerr-type nanostructured materials. Phys. Rev. B 85, 033303 (2012)

    Article  ADS  Google Scholar 

  71. Boyd, R.W.: The nonlinear optical susceptibility. In: Boyd, R.W. (ed.) Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008)

    Google Scholar 

  72. Vahala, K.: Optical microcavities. Nature 424(6950), 839–846 (2003)

    Article  ADS  Google Scholar 

  73. Man, Z.X., An, N.B., Xia, Y.J.: Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems. Phys. Rev. E 94, 042135 (2016)

    Article  ADS  Google Scholar 

  74. Nieuwenhuizen, T.M., Allahverdyan, A.E.: Statistical thermodynamics of quantum Brownian motion: construction of perpetuum mobile of the second kind. Phys. Rev. E 66, 036102 (2002)

    Article  ADS  Google Scholar 

  75. Asadian, A., Manzano, D., Tiersch, M., Briegel, H.J.: Heat transport through lattices of quantum harmonic oscillators in arbitrary dimensions. Phys. Rev. E 87, 012109 (2013)

    Article  ADS  Google Scholar 

  76. Daniel, M.: Quantum transport in networks and photosynthetic complexes at the steady state. Plos ONE 8(2), e57041 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. L. Li and F. Y. Zhang for their fruitful discussions. This work was supported by National Natural Science Foundation of China (NSFC): Grants Nos. 11574041 and 11375036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To derive the effective master equation, utilizing the frequency conduction \(\omega _j=2\omega \), we first transform the master equation to the interaction picture by applying a unitary operator

$$\begin{aligned} {\hat{U}}(t)=\exp \left\{ -i\left( \sum ^N_{j=1}\omega _j{\hat{a}}^{\dagger }_j{\hat{a}}_j+\omega {\hat{b}}^{\dagger }{\hat{b}}\right) t\right\} , \end{aligned}$$
(1)

and then the master equation in the interaction picture can be expressed as

$$\begin{aligned} \frac{\mathrm{d}{\hat{\rho }}_I(t)}{\mathrm{d}t}=\left( {\mathcal {L}}_{I}+{\mathcal {L}}_0 +\sum ^N_{j=1}{\mathcal {L}}_{j}\right) {\hat{\rho }}_I(t), \end{aligned}$$
(2)

where density operator \(\rho _I(t)={\hat{U}}^{\dagger }\rho (t){\hat{U}}\) and the Liouvillian superoperator

$$\begin{aligned} {\mathcal {L}}_I=-i\left[ \left( \sum ^{N}_{i,j}\frac{J_{ij}}{2}{\hat{a}}^{\dagger }_i{\hat{a}}_j+ \sum ^N_{j=1} g_j{\hat{a}}_j{\hat{b}}^{\dagger 2}\right) +h.c.,\varvec{\cdot }\right] . \end{aligned}$$
(3)

In Eq. (2), \({\mathcal {L}}_0\) is the dominant decay tunnel of the system which is created by the reservoir of the highly dissipative cavity. Hence, a reduced master equation can be obtained by eliminating the highly dissipative cavity mode and the method has been mentioned in [40,41,42] which is a commonly used technique to estimate the highly dissipative cavity mode and obtain the effective master equation. Accordingly, we make a transformation for the density operator \(\rho _I(t) \), i.e.,

$$\begin{aligned} \rho '_I(t)=\exp \left\{ -\left( {\mathcal {L}}_0+\sum ^N_{j=1}{\mathcal {L}}_{j}\right) t\right\} \rho _I(t). \end{aligned}$$
(4)

The dynamical evolution equation of Eq. (4) is expressed as

$$\begin{aligned} \frac{\mathrm{d}\rho '_I(t)}{\mathrm{d}t}=\mathcal {L'}_I\rho '_I(t), \end{aligned}$$
(5)

where

$$\begin{aligned} {\mathcal {L}}'_I=\exp \left\{ -\left( {\mathcal {L}}_0 +\sum ^N_{j=1}{\mathcal {L}}_{j}\right) t\right\} {\mathcal {L}}_I\exp \left\{ \left( {\mathcal {L}}_0 +\sum ^N_{j=1}{\mathcal {L}}_{j}\right) t\right\} . \end{aligned}$$
(6)

In Eq. (6), \({\mathcal {L}}_{0}\) and \({\mathcal {L}}_{j}\) are different decay channels that are described by different degrees of freedom of the system, so all the Lindblad superoperators are commutative to each other, i.e., \([{\mathcal {L}}_{i},{\mathcal {L}}_{j}]=0\), and \([{\mathcal {L}}_{i},{\mathcal {L}}_0]=0\), with \(i,j=1,2\ldots ,N\). According to these commutation relations, we can expand \({\mathcal {L}}'_I\) as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}'_I=&-i\big [({\mathcal {A}}_1{\mathcal {B}}_1+{\mathcal {A}}_2{\mathcal {B}}_2-{\mathcal {A}}^{\dagger }_1{\mathcal {B}}^{\dagger }_1 -{\mathcal {A}}^{\dagger }_2{\mathcal {B}}^{\dagger }_2+{\mathcal {O}}-{\mathcal {O}}^{\dagger }\big ], \end{aligned} \end{aligned}$$
(7)

where the superoperators describing the lowly and highly dissipative modes can be expanded by the superoperators of the original frame, that is,

$$\begin{aligned} \begin{aligned} {\mathcal {A}}_1=&\exp \left\{ -\sum ^N_{j=1}{\mathcal {L}}_{j}t\right\} \left( \sum ^N_{j=1} g_j({\hat{a}}_j\varvec{\cdot })\right) \exp \left\{ \sum ^N_{j=1}{\mathcal {L}}_jt\right\} ,\\ {\mathcal {A}}_2=&\exp \left\{ -\sum ^N_{j=1}{\mathcal {L}}_jt\right\} \left( \sum ^N_{j=1} g^*_j({\hat{a}}^{\dagger }_j\varvec{\cdot })\right) \exp \left\{ \sum ^N_{j=1}{\mathcal {L}}_jt\right\} , \\ {\mathcal {B}}_1=&e^{-{\mathcal {L}}_0t}({\hat{b}}^{\dagger 2}\varvec{\cdot })e^{{\mathcal {L}}_0t}, \\ {\mathcal {B}}_2=&e^{-{\mathcal {L}}_0t}({\hat{b}}^2\varvec{\cdot })e^{{\mathcal {L}}_0t}, \\ {\mathcal {B}}_3=&e^{-{\mathcal {L}}_0t}({\hat{b}}^{\dagger }\varvec{\cdot }{\hat{b}}^{\dagger })e^{{\mathcal {L}}_0t}, \end{aligned} \end{aligned}$$
(8)

and the superoperator describing the linear interactions between the highly dissipative cavities is

$$\begin{aligned} \begin{aligned} {\mathcal {O}}=&\exp \left\{ -\sum ^N_{j=1} {\mathcal {L}}_jt\right\} \left( \sum ^N_{i\ne j}J_{ij}({\hat{a}}^{\dagger }_i{\hat{a}}_j \varvec{\cdot })\right) \exp \left\{ \sum ^N_{j=1}{\mathcal {L}}_{j}t\right\} . \end{aligned} \end{aligned}$$
(9)

From Eqs. (8) and (9), we know that all the superoperators are time dependent. In order to expand the \({\mathcal {B}}_i (i=1,2,3)\) with time-independent superoperators, we need to investigate the corresponding dynamical evolution equation. After some calculation, we obtain the corresponding dynamical evolution equation which has the similar form with the Liouvillian equation

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}{\mathcal {B}}_i=[{\mathcal {B}}_i,{\mathcal {L}}_0] =[{\mathcal {B}}_i,{\mathcal {L}}'_0], \end{aligned}$$
(10)

where we have used the relation \({\mathcal {L}}_0={\mathcal {L}}'_0\). Besides, by constructing a vector \({\mathcal {B}}(t)=({\mathcal {B}}_1,{\mathcal {B}}^{\dagger }_2,{\mathcal {B}}_3)^T\) and combining Eq. (10), we obtain a set of differential equations of the first order

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\mathbf {{\mathcal {B}}}(t)=M\mathbf {{\mathcal {B}}}(t), \end{aligned}$$
(11)

and the coefficient matrix is

$$\begin{aligned} M=\left[ \begin{array}{ccc} \kappa (2{\bar{n}}+1) &{} 0 &{} -2\kappa ({\bar{n}}+1) \\ 0 &{} -\kappa (2{\bar{n}}+1) &{} 2\kappa {\bar{n}} \\ \kappa {\bar{n}} &{} -\kappa ({\bar{n}}+1) &{} 0 \end{array} \right] \end{aligned}$$
(12)

The solution of Eq. (12) can be obtained strictly

$$\begin{aligned} \mathbf {{\mathcal {B}}}(t)=e^{Mt}\mathbf {{\mathcal {B}}}(0)\equiv S(t)\mathbf {{\mathcal {B}}}(0), \end{aligned}$$
(13)

where the initial value is \(\mathbf {{\mathcal {B}}}(0)=(({\hat{b}}^{\dagger 2}\varvec{\cdot }),({\hat{b}}^{\dagger }\varvec{\cdot }{\hat{b}}^{\dagger }),(\varvec{\cdot }{\hat{b}}^{\dagger 2}))^T\) and S(t) is a real matrix. \({\mathcal {B}}_i\) can be represented by its initial value and the matrix element of S(t), that is,

$$\begin{aligned} \begin{aligned} {\mathcal {B}}_1=&S_{11}(t){\mathcal {B}}_1(0)+S_{12}(t){\mathcal {B}}^{\dagger }_{2}(0)+S_{13}(t){\mathcal {B}}_3(0), \\ {\mathcal {B}}_2=&S_{21}(t){\mathcal {B}}^{\dagger }_1(0)+S_{22}(t){\mathcal {B}}_{2}(0)+S_{23}(t){\mathcal {B}}^{\dagger }_3(0), \\ {\mathcal {B}}_3=&S_{31}(t){\mathcal {B}}_1(0)+S_{32}(t){\mathcal {B}}^{\dagger }_{2}(0)+S_{33}(t){\mathcal {B}}_3(0), \end{aligned} \end{aligned}$$
(14)

where the parameters related to the highly dissipative tunnel are included in the matrix element of S(t). In order to expand and simplify the superoperator \({\mathcal {L}}'_I\), we plug the vector of Eq. (14) into Eq. (7) and then obtain the corresponding expression

$$\begin{aligned} \begin{aligned} {\mathcal {L}}'_I=&-i\big [(S_{11}(t){\mathcal {A}}_1(t)-S_{21}(t){\mathcal {A}}^{\dagger }_2(t))(b^{\dagger 2}\varvec{\cdot }) +(S_{12}(t){\mathcal {A}}_1(t)\\&-S_{22}(t){\mathcal {A}}^{\dagger }_2(t))(\varvec{\cdot }b^{\dagger 2}) +(S_{13}(t){\mathcal {A}}_1(t)-S_{23}(t){\mathcal {A}}^{\dagger }_2(t))(b^{\dagger }\varvec{\cdot }b^{\dagger })\\&+(S_{21}(t){\mathcal {A}}_2(t)-S_{11}(t){\mathcal {A}}^{\dagger }_1(t))(\varvec{\cdot }b^2) + (S_{22}(t){\mathcal {A}}_2(t)\\&-S_{12}(t){\mathcal {A}}^{\dagger }_1(t))(b^2\varvec{\cdot }) +(S_{23}(t){\mathcal {A}}_2(t)-S_{13}(t){\mathcal {A}}^{\dagger }_1(t))(b\varvec{\cdot }b)\\&+{\mathcal {O}}(t)-{\mathcal {O}}^{\dagger }(t) \big ]. \end{aligned} \end{aligned}$$
(15)

We formally integrate Eq. (5), and then the calculation result can be written as

$$\begin{aligned} {\hat{\rho }}'_I(t)={\hat{\rho }}'_I(0)+\int ^{t}_0\mathrm{d}\tau {\mathcal {L}}'_I(\tau ){\hat{\rho }}'_I(\tau ). \end{aligned}$$
(16)

Moreover, plugging Eq. (16) into Eq. (3), we can obtain the following dynamic equation

$$\begin{aligned} \frac{\mathrm{d}{\hat{\rho }}'_I(t)}{\mathrm{d}t}={\mathcal {L}}'_I(t){\hat{\rho }}'_I(0) +\int ^t_0\mathrm{d}\tau {\mathcal {L}}'_I(t){\mathcal {L}}'_I(\tau ){\hat{\rho }}'_I(\tau ). \end{aligned}$$
(17)

By partially tracing the highly dissipative cavity mode for Eq. (17), we obtain the dynamic evolution of the reduced density operator

$$\begin{aligned} \frac{\mathrm{d}{\hat{\rho }}''_{I}(t)}{\mathrm{d}t}={\text {Tr}}_b\left\{ {\mathcal {L}}'_I(t) \left( {\hat{\rho }}'_I(0)+\int ^t_0\mathrm{d}\tau {\mathcal {L}}'_I(\tau ){\hat{\rho }}'_I(\tau )\right) \right\} , \end{aligned}$$
(18)

where \({\hat{\rho }}''_I(t)={\text {Tr}}_b{\lbrace {\hat{\rho }}'_I(t)\rbrace }\) is the reduced density operator of the system. For our model, the highly dissipative cavity reaches the thermal state on a scale of \(1/\kappa \) that is extremely short. Besides, coupling strengths between the lowly dissipative cavities and the highly dissipative cavity are weak. Hence, under these conditions, the density operator in the initial frame can be represented as a product state, i.e.,

$$\begin{aligned} {\hat{\rho }}(t)\approx {\hat{\rho }}_{a}(t)\otimes \rho _b(t), \end{aligned}$$
(19)

where \({\hat{\rho }}_a\) is the reduced density operator describing all the lowly dissipative cavity modes and \({\hat{\rho }}_b\) is the reduced density operator for the highly dissipative cavity mode. The dynamics of the system can be approximately represented by \({\hat{\rho }}_a\) when the time scale is slower than \(1/\kappa \). During to the rapid dissipation of the highly dissipative cavity, the state \({\hat{\rho }}_b\) coincides with the state of its reservoirs, that is a thermal equilibrium state

$$\begin{aligned} {\hat{\rho }}_a(t)=\sum ^{\infty }_{n=0}\frac{{\bar{n}}^{n}}{(1+{\bar{n}})^{n+1}}\vert n\rangle \langle n\vert \end{aligned}$$
(20)

where \(\vert n\rangle \) is the basis of the Fock space and \({\bar{n}}\) is the mean photon number of the cavity. According to the characteristics of the thermal state, i.e., \({\text {Tr}}{({\hat{b}}^2{\hat{\rho }}_b)}={\text {Tr}}{({\hat{b}}^{\dagger 2}{\hat{\rho }}_b)}=0\), the first term of Eq. (18) can be simplified as

$$\begin{aligned} {\text {Tr}}_b{({\mathcal {L}}'_I(t){\hat{\rho }}'_I(0))}=-i\big [{\mathcal {O}}(t) -{\mathcal {O}}^{\dagger }(t)\big ]{\hat{\rho }}''_I(t). \end{aligned}$$
(21)

Similarly, according to \({\text {Tr}}{({\hat{b}}^2{\hat{\rho }}_b)}={\text {Tr}}{({\hat{b}}^{\dagger 2}{\hat{\rho }}_b)}=0\), the cross-product between superoperators \({\mathcal {O}}\) and \({\mathcal {B}}_i (i=1,2,3)\) has zero trace. Moreover, \(J^2_{ij}\ll 2{\bar{n}}^2\vert g_i\vert \vert g_j\vert /\kappa ,\) with \(i,j=1,2,\ldots , N\), the product between superoperators \({\mathcal {O}}(t)\) and \({\mathcal {O}}(\tau )\) is very small and therefore we can ignore this term in the second term of Eq. (18). Applying the relation \({\text {Tr}}{({\hat{b}}^{\dagger 2}{\hat{b}}^2{\hat{\rho }}_b)}=2{\bar{n}}^2\) and \({\text {Tr}}{({\hat{b}}^{\dagger }{\hat{b}}{\hat{\rho }}_b)}={\bar{n}}\), we can expand the second term of Eq. (18) to

$$\begin{aligned} \begin{aligned} \int _{0}^t \mathrm{d}\tau {\text {Tr}}_b{\big \lbrace {\mathcal {L}}'_I(t){\mathcal {L}}'_I(\tau ) {\hat{\rho }}'_I(\tau )\big \rbrace }=&\int ^t_0 \mathrm{d}\tau e^{-\kappa (t-\tau )}\Big \lbrace 2{\bar{n}}^2\Big ({\mathcal {A}}_2(t){\mathcal {A}}^{\dagger }_2(\tau )\\&-{\mathcal {A}}_1(t){\mathcal {A}}_2(\tau ) +{\mathcal {A}}^{\dagger }_2(t) {\mathcal {A}}_2(\tau ) \\&-{\mathcal {A}}^{\dagger }_1(t){\mathcal {A}}^{\dagger }_2(\tau )\Big ) +2({\bar{n}}+1)^2\\&\Big ({\mathcal {A}}_1(t){\mathcal {A}}^{\dagger }_1(\tau ) -{\mathcal {A}}_2(t){\mathcal {A}}_1(\tau )\\&+{\mathcal {A}}^{\dagger }_1(t){\mathcal {A}}_1(\tau )-{\mathcal {A}}^{\dagger }_2(t) {\mathcal {A}}^{\dagger }_1(\tau )\Big ) \Big \rbrace \end{aligned} \end{aligned}$$
(22)

As we mentioned earlier, the dynamics of the quantum transmission network are slower than a time scale \(1/\kappa \), i.e., the exponential function in the time Eq. (22) decays rapidly. It can also be explained by using the language of mathematics that the exponential function tends to a delta function [41]

$$\begin{aligned} e^{-\kappa (t-\tau )}\longrightarrow \frac{2}{\kappa }\delta (t-\tau ). \end{aligned}$$
(23)

This limit is equivalent to the Markovian approximation in an open quantum system that ignores the memory effects of the highly dissipative cavity mode. Applying the relation Eq. (23) to expand and simplify Eq. (22), we can obtain the dynamical evolution equation of \({\hat{\rho }}''_I(t)\), i.e.,

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d}\rho ''_{I}(t)}{\mathrm{d}t}=&\exp \left\{ -\sum ^N_{j=1}{\mathcal {L}}_jt \right\} \left\{ \frac{4{\bar{n}}^2}{\kappa }\left\{ \sum ^N_{j=1}\vert g_j\vert ^2\left[ 2({\hat{a}}^{\dagger }_j\varvec{\cdot }{\hat{a}}_j) -({\hat{a}}_j{\hat{a}}^{\dagger }_j\varvec{\cdot }) -(\varvec{\cdot }{\hat{a}}_j{\hat{a}}^{\dagger }_j) \right] \right. \right. \\&\left. \left. +\sum ^N_{i\ne j}g^*_ig_j\left[ 2({\hat{a}}^{\dagger }_i\varvec{\cdot }{\hat{a}}_j) -({\hat{a}}_j{\hat{a}}^{\dagger }_i\varvec{\cdot }) \rbrace -(\varvec{\cdot }{\hat{a}}_j{\hat{a}}^{\dagger }_i)\right] \right. \right. \\&\left. \left. + \frac{4({\bar{n}}+1)^2}{\kappa }\left\{ \sum ^N_j\vert g_j\vert ^2\left[ 2({\hat{a}}_j\varvec{\cdot }{\hat{a}}^{\dagger }_j) -({\hat{a}}^{\dagger }_j{\hat{a}}_j\varvec{\cdot }) -(\varvec{\cdot }{\hat{a}}^{\dagger }_j{\hat{a}}_j) \right] \right. \right. \right. \\&\left. \left. \left. +\sum ^N_{i\ne j}g_ig^*_j\left[ 2({\hat{a}}_i\varvec{\cdot }{\hat{a}}^{\dagger }_j) -({\hat{a}}^{\dagger }_j{\hat{a}}_i\varvec{\cdot }) -(\varvec{\cdot }{\hat{a}}^{\dagger }_j{\hat{a}}_i)\right] \right\} -i\left\{ \sum ^N_{i\ne j}\frac{J_{ij}}{2}[({\hat{a}}^{\dagger }_i{\hat{a}}_j\varvec{\cdot })\right. \right. \right. \\&\left. \left. +({\hat{a}}^{\dagger }_j{\hat{a}}_i\varvec{\cdot })- (\varvec{\cdot }{\hat{a}}^{\dagger }_i{\hat{a}}_j)-(\varvec{\cdot }{\hat{a}}^{\dagger }_j {\hat{a}}_i]\right\} \right\} \exp \left\{ \sum ^N_{j=1}{\mathcal {L}}_jt\right\} \rho ''_{I}(t). \end{aligned} \end{aligned}$$
(24)

Next, we transform the master equation Eq. (24) back to the original frame by an operation

$$\begin{aligned} {\hat{\rho }}_a={\hat{U}}\exp \left\{ \sum ^N_{j=1}{\mathcal {L}}_jt\right\} \rho ''_{I}(t) {\hat{U}}^{\dagger }. \end{aligned}$$
(25)

Differentiating Eq. (25) with respect to time, and together with Eqs. (1) and (24), we can obtain the effective master equation (6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, YX., Shen, J., Gebremariam, T. et al. The study of interference effect in a globally coupled quantum network. Quantum Inf Process 18, 205 (2019). https://doi.org/10.1007/s11128-019-2325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2325-3

Keywords

Navigation