Skip to main content
Log in

Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme for joint remote state preparation (JRSP) of arbitrary multi-qubit states from two senders to one receiver with the 100% successful probability. Quantum channel is composed of maximally three-qubit entangled states, and several special mutually orthogonal measurement basis are constructed without the introduction of auxiliary particles. We also calculate the total classical communication cost required in the JRSP processes. The concrete JRSP procedures for remotely preparing single-qubit and two-qubit states are illustrated to prove explicitly the feasibility of this JRSP protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  4. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  5. Zhang, Z.J.: Controlled teleportation of an arbitrary \(n\)-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55 (2006)

    Article  ADS  Google Scholar 

  6. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state. Opt. Commun. 231, 281 (2004)

    Article  ADS  Google Scholar 

  7. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B 6, 106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel. J. Phys. A 40, 13121 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dai, H.Y., Li, C.Z., Chen, P.X.: Probabilistic teleportation of the three-particle entangled state by the partial three-particle entangled state and the threeparticle entangled W state. Chin. Phys. Lett. 20, 1196 (2003)

    Article  ADS  Google Scholar 

  10. Li, X.H., Ghose, S.: Analysis of \(N\)-qubit perfectly controlled teleportation schemes from the controllers point of view. Phys. Rev. A 91, 052305 (2015)

    Article  ADS  Google Scholar 

  11. Wei, J.H., Shi, L., Han, C., Xu, Z.Y., et al.: Probabilistic teleportation via multi-parameter measurements and partially entangled states. Quantum Inf. Process 17, 82 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  12. Long, Y.X., Qiu, D.W., Long, D.Y.: Perfect teleportation between arbitrary split of six partites by a maximally genuinely entangled six-qubit state. Int. J. Quantum Inf. 8, 821 (2010)

    Article  Google Scholar 

  13. Li, L.Z., Qiu, D.W.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  15. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  16. Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60, 313 (2013)

    Article  ADS  Google Scholar 

  17. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)

    Article  ADS  Google Scholar 

  18. Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 260 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Xia, Y., Lu, P.M., Song, J., Song, H.S.: Deterministic remote preparation of electrons states in coupled quantum dots by stimulated raman adiabatic passage. Int. J. Theor. Phys. 49, 2045 (2010)

    Article  Google Scholar 

  20. Wei, J.H., Shi, L., Zhu, Y., Xue, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process 17, 70 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719 (2007)

    Article  ADS  Google Scholar 

  22. Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51, 1647 (2011)

    Article  Google Scholar 

  23. Zhang, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52, 849 (2013)

    Article  Google Scholar 

  26. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)

    Article  ADS  Google Scholar 

  27. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)

    Article  Google Scholar 

  30. Chen, N., Quan, D.X., Zhu, C.H., et al.: Deterministic joint remote state preparation via partially entangled quantum channel. Int. J. Quantum Inf. 14, 1650015 (2016)

    Article  Google Scholar 

  31. Chen, Q.Q., Xia, Y.: Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Phys. 26, 015203 (2016)

    Article  ADS  Google Scholar 

  32. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)

    Article  ADS  Google Scholar 

  33. Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit \(\chi \)-State. Int. J. Theor. Phys. 51, 3027 (2012)

    Article  MathSciNet  Google Scholar 

  34. Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)

    Article  MathSciNet  Google Scholar 

  35. Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an Arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51, 2438 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhou, P.: Joint remote preparation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A 45, 215305 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  38. Jiang, M., Zhou, L.L., Chen, X.P., You, S.H.: Deterministic joint refdemote preparation of general multi-qubit states. Opt. Commun. 301, 39 (2013)

    Article  ADS  Google Scholar 

  39. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  40. Situ, H.Z., Qiu, D.W.: Investigating the implementation of restricted sets of multiqubit operations on distant qubits: a communication complexity perspective. Quantum Inf. Process 10, 609 (2011)

    Article  MathSciNet  Google Scholar 

  41. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)

    Article  ADS  Google Scholar 

  42. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  43. Wei, J.H., Shi, L., Luo, J.W., Zhu, Y., Kang, Q.Y., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process 17, 141 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)

    Article  ADS  Google Scholar 

  45. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Jiang, J.W. Luo and Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61803382, 61703428, and 61703420), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No. 2018M643869).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahua Wei or Longqiang Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shi, L., Zhao, S. et al. Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states. Quantum Inf Process 18, 237 (2019). https://doi.org/10.1007/s11128-019-2350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2350-2

Keywords

Navigation