Skip to main content
Log in

Cryptanalysis of multiparty quantum digital signatures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multiparty quantum digital signatures play an important role in quantum networks which sign and distribute message among users with information-theoretic security. In this work, we give a cryptanalysis of a multiparty quantum digital signature scheme and then propose a new attacks strategy, whereby dishonest participants can frame an honest participant if they collude with each other. To prevent the framing attack, we study the relations between the signing key and each verification key, as well as the relations among different verification keys in this scheme, and then give the security requirements on the relations among different keys, which is also very useful for the next development of multiparty quantum digital signature schemes. Finally, we present a possible way to solve the security problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du, H.Z., Wen, Q.Y.: Certificateless proxy multi-signature. Inf. Sci. 276, 21–30 (2014)

    Article  MathSciNet  Google Scholar 

  2. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  3. Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Advances in Cryptology-Crypto 1990, pp. 206–214. Springer, Berlin (1991)

  4. Hanaoka, G., Shikata, J., Zheng, Y.L., et al.: Unconditionally secure digital signature schemes admitting transferability. In: Advances in Cryptology-Asiacrypt 2000, pp. 130–142. Springer, Berlin (2000)

    Chapter  Google Scholar 

  5. Ueli, M.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993)

    Article  MathSciNet  Google Scholar 

  6. Clarke, P.J., Collins, R.J., Dunjko, V., et al.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun. 3, 1174 (2012)

    Article  ADS  Google Scholar 

  7. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112, 040502 (2014)

    Article  ADS  Google Scholar 

  8. Collins, R.J., Donaldson, R.J., Vedran, D., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113, 040502 (2014)

    Article  ADS  Google Scholar 

  9. Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91, 042304 (2015)

    Article  ADS  Google Scholar 

  10. Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  11. Donaldson, R.J., Collins, R.J., Kleczkowska, K., et al.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A 93, 012329 (2016)

    Article  ADS  Google Scholar 

  12. Amiri, R., Wallden, P., Kent, A., et al.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93, 032325 (2016)

    Article  ADS  Google Scholar 

  13. Yin, H.L., Fu, Y., Chen, Z.B.: Practical quantum digital signature. Phys. Rev. A 93, 032316 (2016)

    Article  ADS  Google Scholar 

  14. Collins, R.J., Amiri, R., Fujiwara, M., et al.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883–4886 (2016)

    Article  ADS  Google Scholar 

  15. Puthoor, I.V., Amiri, R., Wallden, P., et al.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94, 022328 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quant. Inf. Process. 16, 19 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yin, H.L., Fu, Y., Liu, H., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A 95, 032334 (2017)

    Article  ADS  Google Scholar 

  18. Yin, H.L., Wang, M.L., Tang, Y.L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)

    Article  ADS  Google Scholar 

  19. Roberts, G.L., Lucamarini, M., Yuan, Z.L., et al.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098 (2017)

    Article  ADS  Google Scholar 

  20. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  21. Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quant. Inf. Comput. 6, 0435 (2016)

    MathSciNet  Google Scholar 

  22. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  23. Sun, H.W., Zhang, L., Zuo, H.J., et al.: Offline arbitrated quantum bind dual-signature protocol with better performance in resisting existential forgery attack. Int. J. Theor. Phys. 57, 2695–2708 (2018)

    Article  Google Scholar 

  24. Fan, L.: A blind signature protocol with exchangeable signature sequence. Int. J. Theor. Phys. 57, 3850–3858 (2018)

    Article  MathSciNet  Google Scholar 

  25. Gao, F., Liu, B., Wen, Q.Y., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411 (2012)

    Article  ADS  Google Scholar 

  26. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  27. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  28. Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67(1), 2–8 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for helpful comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61602232, 61672110, 61572081, 61671082, 61572246), the Program for Science & Technology Innovation Research Team in Universities of Henan Province (Grant No. 18IRTSTHN014), The key scientific and technological research project of Henan Province (Grant No. 182102310930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, XQ., Wang, TY., Wei, CY. et al. Cryptanalysis of multiparty quantum digital signatures. Quantum Inf Process 18, 252 (2019). https://doi.org/10.1007/s11128-019-2365-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2365-8

Keywords

Navigation