Skip to main content
Log in

High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Historically, the information efficiency of the secret key in quantum key distribution (QKD) schemes based on binary signal formats was limited to 1 bit/particle. An efficient high-dimensional QKD protocol based on qudits transmission with the quantum Fourier transform is proposed. In the proposal, the inherent encoding framework provides a secure solution to key distribution, where the secret information can be hidden into the relative phases of the generated high-dimensional entangled state by performing the quantum Fourier transform and the quantum controlled-NOT gate. After the reverse operations are carried out, the key information can be decoded with the single-particle measurement chosen from two mutually unbiased bases. The secret key taking the form of the high-dimensional quantum state throughout the proposed QKD protocol enables to break the information efficiency limit. Besides, the security of the proposed QKD protocol is guaranteed by the decoy state method and it is proven to be secure even for the photon number splitting attack and the side-channel attack. The cryptographic performance in terms of security and capacity is better than that of traditional cryptographic protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhou, N.R., Zhu, K.N., Zou, X.F.: Multi-party semi-quantum key distribution protocol with four-particle cluster states. Ann. Phys. 1, 1800520 (2019). https://doi.org/10.1002/andp.201800520

    Article  Google Scholar 

  5. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  6. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  7. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)

    Article  ADS  Google Scholar 

  8. Brádler, K., Mirhosseini, M., Fickler, R., Broadbent, A., Boyd, R.: Finite-key security analysis for multilevel quantum key distribution. New J. Phys. 18(7), 073030 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Thew, R.T., Acín, A., Zbinden, H., Gisin, N.: Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Nunn, J., Wright, L.J., Söller, C., Zhang, L., Walmsley, I.A., Smith, B.J.: Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express 21(13), 15959 (2013)

    Article  ADS  Google Scholar 

  11. Niu, M.Y., Xu, F., Shapiro, J.H., Furrer, F.: Finite-key analysis for time-energy high-dimensional quantum key distribution. Phys. Rev. A 94(5), 052323 (2016)

    Article  ADS  Google Scholar 

  12. Zhang, L., Silberhorn, C., Walmsley, I.A.: Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett. 100, 110504 (2008)

    Article  ADS  Google Scholar 

  13. Etcheverry, S., Cañas, G., Gómez, E.S., Nogueira, W.A.T., Saavedra, C., Xavier, G.B., Lima, G.: Quantum key distribution session with 16-dimensional photonic states. Sci. Rep. 3, 2316 (2013)

    Article  ADS  Google Scholar 

  14. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412(6844), 313 (2001)

    Article  ADS  Google Scholar 

  15. Molina-Terriza, G., Vaziri, A., Řeháček, J., Hradil, Z., Zeilinger, A.: Triggered qutrits for quantum communication protocols. Phys. Rev. Lett. 92, 167903 (2004)

    Article  ADS  Google Scholar 

  16. Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)

    Article  ADS  Google Scholar 

  17. Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Rodenburg, B., Malik, M., Lavery, M.P., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Bacco, D., Christensen, J.B., Castaneda, M.A.U., Ding, Y., Forchhammer, S., Rottwitt, K., Oxenløwe, L.K.: Two-dimensional distributed-phase-reference protocol for quantum key distribution. Sci. Rep. 6, 36756 (2016)

    Article  ADS  Google Scholar 

  19. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  20. Cotler, J.S., Shor, P.W.: A new relativistic orthogonal states quantum key distribution protocol. Quantum Inf. Comput. 14, 13 (2014)

    MathSciNet  Google Scholar 

  21. Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6(7), 488 (2012)

    Article  ADS  Google Scholar 

  22. Sych, D.V., Grishanin, B.A., Zadkov, V.N.: Critical error rate of quantum-key-distribution protocols versus the size and dimensionality of the quantum alphabet. Phys. Rev. A 70(5), 052331 (2004)

    Article  ADS  Google Scholar 

  23. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  24. Li, X.H., Deng, F.G., Zhou, H.Y.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger–Horne–Zeilinger states. Chin. Phys. Lett. 24, 1151 (2007)

    Article  ADS  Google Scholar 

  25. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  26. Yang, W., Huang, L.S., Shi, R.H., He, L.B.: Secret sharing based on quantum Fourier transform. Quantum Inf. Process. 12, 2465 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Xiao, H.L., Gao, J.L.: Multi-party d-level quantum secret sharing scheme. Int. J. Theor. Phys. 52, 2075 (2013)

    Article  MathSciNet  Google Scholar 

  28. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889 (2001)

    Article  ADS  Google Scholar 

  29. Qin, H.W., Tso, R.L., Dai, Y.W.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17, 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, H., Tang, W.K., Tso, R.: Rational quantum secret sharing. Sci. Rep. 8(1), 11115 (2018)

    Article  ADS  Google Scholar 

  31. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum Fourier transform. Quantum Inf. Process. 17(6), 129 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  33. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  34. Ding, Y., Bacco, D., Dalgaard, K., Cai, X., Zhou, X., Rottwitt, K., Oxenløwe, L.K.: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 3(1), 1 (2017)

    Article  Google Scholar 

  35. Cañas, G., Vera, N., Cariñe, J., González, P., Cardenas, J., Connolly, P.W.R.: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96(2), 022317 (2017)

    Article  ADS  Google Scholar 

  36. Qin, H.W., Dai, Y.W.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf. Process. 16, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qin, H.W., Dai, Y.W.: D-dimensional quantum state sharing with adversary structure. Quantum Inf. Process. 15, 1689 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Mirhosseini, M., Magaña-Loaiza, O.S., O’Sullivan, M.N., Rodenburg, B., Malik, M., Lavery, M.P., Boyd, R.W.: High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  41. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12(11), 113026 (2010)

    Article  ADS  Google Scholar 

  42. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 1105011 (2011)

    Article  Google Scholar 

  43. Xu, F., Curty, M., Qi, B., Lo, H.-K.: Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 21, Article ID 6601111 (2015)

    Google Scholar 

  44. Dellantonio, L., Sørensen, A.S., Bacco, D.: High-dimensional measurement-device-independent quantum key distribution on two-dimensional subspaces. Phys. Rev. A 98(6), 062301 (2018)

    Article  ADS  Google Scholar 

  45. Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quantum Inf. Process. 16(12), 304 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), the Innovation Special Foundation of Graduate Student of Jiangxi Province (Grant No. YC2018-B005) and the Innovation Special Foundation of Graduate Student of Nanchang University (Grant No. CX2018142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, XY., Zhou, NR., Gong, LH. et al. High-dimensional quantum key distribution based on qudits transmission with quantum Fourier transform. Quantum Inf Process 18, 271 (2019). https://doi.org/10.1007/s11128-019-2368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2368-5

Keywords

Navigation