Skip to main content

Advertisement

Log in

Linear optical CNOT gate with orbital angular momentum and polarization

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is well established in the theory of quantum computation that the controlled-NOT (CNOT) gate is a fundamental element in the construction of a quantum computer. Here, we propose and experimentally demonstrate within a classical light framework that a Mach–Zehnder interferometer composed of polarized beam splitters and a pentaprism in the place of one of the mirrors works as a linear optical quantum CNOT gate. To perform the information processing, the polarization and orbital angular momentum of light act as the control and target qubits, respectively. The readout process is simple, requiring only a linear polarizer and a triangular diffractive aperture prior to detection. The viability and stability of our experiment suggest that the present proposal is a valuable candidate for future implementations in optical quantum computation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)

    MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 EP (2001). https://doi.org/10.1038/35051009

    Article  ADS  Google Scholar 

  6. Bouwmeester, D., Ekert, A.K., Zeilinger, A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, 1st edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  7. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997). https://doi.org/10.1137/S0097539795293172

    Article  MathSciNet  MATH  Google Scholar 

  8. Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F.V., Gilchrist, A., White, A.G.: Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007). https://doi.org/10.1103/PhysRevLett.99.250505

    Article  ADS  Google Scholar 

  9. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005). https://doi.org/10.1103/RevModPhys.76.1267

    Article  ADS  Google Scholar 

  11. de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. A 381(28), 2239 (2017). https://doi.org/10.1016/j.physleta.2017.05.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Ao, E.F.G., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41(24), 5797 (2016). https://doi.org/10.1364/OL.41.005797

    Article  ADS  Google Scholar 

  13. Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658 (2014). https://doi.org/10.1007/s13538-014-0250-6

    Article  ADS  Google Scholar 

  14. Balthazar, W.F., Passos, M.H.M., Schmidt, A.G.M., Caetano, D.P., Huguenin, J.A.O.: Experimental realization of the quantum duel game using linear optical circuits. J. Phys. B At. Mol. Opt. Phys. 48(16), 165505 (2015)

    Article  ADS  Google Scholar 

  15. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995). https://doi.org/10.1103/PhysRevA.51.1015

    Article  ADS  Google Scholar 

  16. Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139193658

    Book  MATH  Google Scholar 

  17. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007). https://doi.org/10.1103/RevModPhys.79.135

    Article  ADS  Google Scholar 

  18. Fiorentino, M., Wong, F.N.C.: Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93, 070502 (2004). https://doi.org/10.1103/PhysRevLett.93.070502

    Article  ADS  Google Scholar 

  19. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quantum Semiclass. Opt. 7(9), 288 (2005)

    Article  ADS  Google Scholar 

  20. Deng, L.P., Wang, H., Wang, K.: Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B 24(9), 2517 (2007). https://doi.org/10.1364/JOSAB.24.002517

    Article  ADS  MathSciNet  Google Scholar 

  21. Zeng, Q., Li, T., Song, X., Zhang, X.: Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light. Opt. Express 24(8), 8186 (2016). https://doi.org/10.1364/OE.24.008186

    Article  ADS  Google Scholar 

  22. Hickmann, J.M., Fonseca, E.J.S., Soares, W.C., Chávez-Cerda, S.: Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010). https://doi.org/10.1103/PhysRevLett.105.053904

    Article  ADS  Google Scholar 

  23. Soares, W.C., Moura, A.L., Canabarro, A.A., de Lima, E., Hickmann, J.M.: Singular optical lattice generation using light beams with orbital angular momentum. Opt. Lett. 40(22), 5129 (2015). https://doi.org/10.1364/OL.40.005129

    Article  ADS  Google Scholar 

  24. Melo, L.A., Jesus-Silva, A.J., Chávez-Cerda, S., Ribeiro, P.H.S., Soares, W.C.: Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture. Sci. Rep. 8(1), 6370 (2018). https://doi.org/10.1038/s41598-018-24928-5

    Article  ADS  Google Scholar 

  25. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  ADS  Google Scholar 

  26. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161 (2011). https://doi.org/10.1364/AOP.3.000161

    Article  Google Scholar 

  27. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008). https://doi.org/10.1038/nphys919

    Article  Google Scholar 

  28. Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248 (2016). https://doi.org/10.1038/nphoton.2016.12

    Article  ADS  Google Scholar 

  29. Fickler, R., Campbell, G., Buchler, B., Lam, P.K., Zeilinger, A.: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. 113(48), 13642 (2016). https://doi.org/10.1073/pnas.1616889113

    Article  ADS  Google Scholar 

  30. Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018). https://doi.org/10.1038/lsa.2017.146

    Article  Google Scholar 

  31. Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014). https://doi.org/10.1103/PhysRevLett.113.060503

    Article  ADS  Google Scholar 

  32. Gonzalez Alonso, J.R., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326 (2013). https://doi.org/10.1103/PhysRevA.88.022326

    Article  ADS  Google Scholar 

  33. Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013). https://doi.org/10.1103/PhysRevA.88.012312

    Article  ADS  Google Scholar 

  34. Sasada, H., Okamoto, M.: Transverse-mode beam splitter of a light beam and its application to quantum cryptography. Phys. Rev. A 68, 012323 (2003). https://doi.org/10.1103/PhysRevA.68.012323

    Article  ADS  Google Scholar 

  35. Berkhout, G.C.G., Lavery, M.P.J., Courtial, J., Beijersbergen, M.W., Padgett, M.J.: Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010). https://doi.org/10.1103/PhysRevLett.105.153601

    Article  ADS  Google Scholar 

  36. Lavery, M.P.J., Robertson, D.J., Berkhout, G.C.G., Love, G.D., Padgett, M.J., Courtial, J.: Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20(3), 2110 (2012). https://doi.org/10.1364/OE.20.002110

    Article  ADS  Google Scholar 

  37. Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282 (2000). https://doi.org/10.1126/science.290.5500.2282

    Article  ADS  Google Scholar 

  38. Li, Y., Humphreys, P.C., Mendoza, G.J., Benjamin, S.C.: Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015). https://doi.org/10.1103/PhysRevX.5.041007

    Article  Google Scholar 

  39. Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017). https://doi.org/10.1063/1.4976737

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AC thanks UFAL for a paid license for scientific cooperation at UFRN, MEC/UFRN for a fellowship and the Brazilian funding agency CNPQ Universal Grant No. 423713/2016-7. BLB received financial support CNPq, Grant No. 309292/2016-6. WCS acknowledges the Brazilian funding agencies CAPES, FAPEAL and INCT-IQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askery Canabarro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, J.H., Soares, W.C., de Lima Bernardo, B. et al. Linear optical CNOT gate with orbital angular momentum and polarization. Quantum Inf Process 18, 256 (2019). https://doi.org/10.1007/s11128-019-2369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2369-4

Keywords