Abstract
It is well established in the theory of quantum computation that the controlled-NOT (CNOT) gate is a fundamental element in the construction of a quantum computer. Here, we propose and experimentally demonstrate within a classical light framework that a Mach–Zehnder interferometer composed of polarized beam splitters and a pentaprism in the place of one of the mirrors works as a linear optical quantum CNOT gate. To perform the information processing, the polarization and orbital angular momentum of light act as the control and target qubits, respectively. The readout process is simple, requiring only a linear polarizer and a triangular diffractive aperture prior to detection. The viability and stability of our experiment suggest that the present proposal is a valuable candidate for future implementations in optical quantum computation protocols.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992). https://doi.org/10.1103/PhysRevLett.69.2881
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 EP (2001). https://doi.org/10.1038/35051009
Bouwmeester, D., Ekert, A.K., Zeilinger, A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, 1st edn. Springer, Berlin (2010)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997). https://doi.org/10.1137/S0097539795293172
Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F.V., Gilchrist, A., White, A.G.: Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007). https://doi.org/10.1103/PhysRevLett.99.250505
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). https://doi.org/10.1103/RevModPhys.75.715
Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2005). https://doi.org/10.1103/RevModPhys.76.1267
de Lima Bernardo, B.: Unified quantum density matrix description of coherence and polarization. Phys. Lett. A 381(28), 2239 (2017). https://doi.org/10.1016/j.physleta.2017.05.018
Balthazar, W.F., Souza, C.E.R., Caetano, D.P., Ao, E.F.G., Huguenin, J.A.O., Khoury, A.Z.: Tripartite nonseparability in classical optics. Opt. Lett. 41(24), 5797 (2016). https://doi.org/10.1364/OL.41.005797
Balthazar, W.F., Caetano, D.P., Souza, C.E.R., Huguenin, J.A.O.: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658 (2014). https://doi.org/10.1007/s13538-014-0250-6
Balthazar, W.F., Passos, M.H.M., Schmidt, A.G.M., Caetano, D.P., Huguenin, J.A.O.: Experimental realization of the quantum duel game using linear optical circuits. J. Phys. B At. Mol. Opt. Phys. 48(16), 165505 (2015)
DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995). https://doi.org/10.1103/PhysRevA.51.1015
Kok, P., Lovett, B.W.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139193658
Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007). https://doi.org/10.1103/RevModPhys.79.135
Fiorentino, M., Wong, F.N.C.: Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93, 070502 (2004). https://doi.org/10.1103/PhysRevLett.93.070502
de Oliveira, A.N., Walborn, S.P., Monken, C.H.: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quantum Semiclass. Opt. 7(9), 288 (2005)
Deng, L.P., Wang, H., Wang, K.: Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic. J. Opt. Soc. Am. B 24(9), 2517 (2007). https://doi.org/10.1364/JOSAB.24.002517
Zeng, Q., Li, T., Song, X., Zhang, X.: Realization of optimized quantum controlled-logic gate based on the orbital angular momentum of light. Opt. Express 24(8), 8186 (2016). https://doi.org/10.1364/OE.24.008186
Hickmann, J.M., Fonseca, E.J.S., Soares, W.C., Chávez-Cerda, S.: Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010). https://doi.org/10.1103/PhysRevLett.105.053904
Soares, W.C., Moura, A.L., Canabarro, A.A., de Lima, E., Hickmann, J.M.: Singular optical lattice generation using light beams with orbital angular momentum. Opt. Lett. 40(22), 5129 (2015). https://doi.org/10.1364/OL.40.005129
Melo, L.A., Jesus-Silva, A.J., Chávez-Cerda, S., Ribeiro, P.H.S., Soares, W.C.: Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture. Sci. Rep. 8(1), 6370 (2018). https://doi.org/10.1038/s41598-018-24928-5
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185
Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161 (2011). https://doi.org/10.1364/AOP.3.000161
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282 (2008). https://doi.org/10.1038/nphys919
Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., Zeilinger, A.: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248 (2016). https://doi.org/10.1038/nphoton.2016.12
Fickler, R., Campbell, G., Buchler, B., Lam, P.K., Zeilinger, A.: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. 113(48), 13642 (2016). https://doi.org/10.1073/pnas.1616889113
Erhard, M., Fickler, R., Krenn, M., Zeilinger, A.: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146 (2018). https://doi.org/10.1038/lsa.2017.146
Vallone, G., D’Ambrosio, V., Sponselli, A., Slussarenko, S., Marrucci, L., Sciarrino, F., Villoresi, P.: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014). https://doi.org/10.1103/PhysRevLett.113.060503
Gonzalez Alonso, J.R., Brun, T.A.: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326 (2013). https://doi.org/10.1103/PhysRevA.88.022326
Hamadou Ibrahim, A., Roux, F.S., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013). https://doi.org/10.1103/PhysRevA.88.012312
Sasada, H., Okamoto, M.: Transverse-mode beam splitter of a light beam and its application to quantum cryptography. Phys. Rev. A 68, 012323 (2003). https://doi.org/10.1103/PhysRevA.68.012323
Berkhout, G.C.G., Lavery, M.P.J., Courtial, J., Beijersbergen, M.W., Padgett, M.J.: Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010). https://doi.org/10.1103/PhysRevLett.105.153601
Lavery, M.P.J., Robertson, D.J., Berkhout, G.C.G., Love, G.D., Padgett, M.J., Courtial, J.: Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express 20(3), 2110 (2012). https://doi.org/10.1364/OE.20.002110
Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290(5500), 2282 (2000). https://doi.org/10.1126/science.290.5500.2282
Li, Y., Humphreys, P.C., Mendoza, G.J., Benjamin, S.C.: Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015). https://doi.org/10.1103/PhysRevX.5.041007
Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017). https://doi.org/10.1063/1.4976737
Acknowledgements
AC thanks UFAL for a paid license for scientific cooperation at UFRN, MEC/UFRN for a fellowship and the Brazilian funding agency CNPQ Universal Grant No. 423713/2016-7. BLB received financial support CNPq, Grant No. 309292/2016-6. WCS acknowledges the Brazilian funding agencies CAPES, FAPEAL and INCT-IQ.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lopes, J.H., Soares, W.C., de Lima Bernardo, B. et al. Linear optical CNOT gate with orbital angular momentum and polarization. Quantum Inf Process 18, 256 (2019). https://doi.org/10.1007/s11128-019-2369-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2369-4