Skip to main content
Log in

Dual-band unidirectional reflectionlessness in non-Hermitian quantum system consisting of a gain and a loss plasmonic cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Dual-band unidirectional reflectionlessness is investigated in a non-Hermitian quantum system that consists of two plasmonic cavities coupled to a one-dimensional plasmonic waveguide. By appropriately adjusting the phase shift and decay rate of two plasmonic cavities, dual-band unidirectional reflectionlessness is obtained at exceptional points. Moreover, the dual-band unidirectional reflectionlessness can be manipulated in the wide ranges of phase shift and decay rate. In addition, high non-reciprocal entanglement between two plasmonic cavities can be obtained under appropriate phase shift and decay rate of two plasmonic cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Jing, H., Özdemir, S.K., Lü, H., Nori, F.: High-order exceptional points in optomechanics. Sci. Rep. 7, 3386 (2017)

    Article  ADS  Google Scholar 

  4. Peng, B., Özdemir, S.K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C.M., Nori, F., Yang, L.: Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014)

    Article  ADS  Google Scholar 

  5. Peng, B., Özdemir, S.K., Liertzer, M., Chen, W., Kramer, J., Yilmaz, H., Wiersig, J., Rotter, S., Yang, L.: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA 113, 6845–6850 (2016)

    Article  ADS  Google Scholar 

  6. Doppler, J., Mailybaev, A.A., Böhm, J., Kuhl, U., Girschik, A., Libisch, F., Milburn, T.J., Rabl, P., Moiseyev, N., Rotter, S.: Dynamically encircling an exceptional point for asymmetric mode switching. Nature 537, 76–79 (2016)

    Article  ADS  Google Scholar 

  7. Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Article  Google Scholar 

  8. Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M.: Parity-time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics 8, 524–529 (2014)

    Article  ADS  Google Scholar 

  9. He, B., Yang, L., Jiang, X., Xiao, M.: Transmission nonreciprocity in a mutually coupled circulating structure. Phys. Rev. Lett. 120(20), 203904 (2018)

    Article  ADS  Google Scholar 

  10. Xia, K., Nori, F., Xiao, M.: Cavity-free optical isolators and circulators using a chiral cross-Kerr nonlinearity. Phys. Rev. Lett. 121(20), 203602 (2018)

    Article  ADS  Google Scholar 

  11. Miri, M.A., LiKamWa, P., Christodoulides, D.N.: Large area single-mode parity-time-symmetric laser amplifiers. Opt. Lett. 37, 764–766 (2012)

    Article  ADS  Google Scholar 

  12. Jing, H., Özdemir, S.K., Lü, X.-Y., Zhang, J., Yang, L., Nori, F.: PT-symmetric phonon laser. Phys. Rev. Lett. 113(5), 053604 (2014)

    Article  ADS  Google Scholar 

  13. Hodaei, H., Miri, M.A., Hassan, A.U., Hayenga, W.E., Heinrich, M., Christodouldes, D.N., Khajavikhan, M.: Parity-time-symmetric coupled microring lasers operating around an exceptional point. Opt. Lett. 40, 4955–4958 (2015)

    Article  ADS  Google Scholar 

  14. Ge, L., Ganainy, REl: Nonlinear modal interactions in parity-time (PT) symmetric lasers. Sci. Rep. 6, 24889 (2016)

    Article  ADS  Google Scholar 

  15. Gu, Z., Zhang, N., Lyu, Q., Li, M., Xiao, S., Song, Q.: Experimental demonstration of PT-symmetric stripe lasers. Laser Photonics Rev. 10, 588–594 (2016)

    Article  ADS  Google Scholar 

  16. He, B., Yang, L., Xiao, M.: Dynamical phonon laser in coupled active–passive microresonators. Phys. Rev. A 94(3), 031802 (2016)

    Article  ADS  Google Scholar 

  17. Jiang, Y., Maayani, S., Carmon, T., Nori, F., Jing, H.: Nonreciprocal phonon laser. Phys. Rev. Appl. 10(6), 064037 (2018)

    Article  ADS  Google Scholar 

  18. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  19. Jing, H., Özdemir, S.K., Geng, Z., Zhang, J., Lü, X.Y., Peng, B., Yang, L., Nori, F.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5, 9663 (2015)

    Article  Google Scholar 

  20. Baum, B., Alaeian, H., Dionne, J.A.: A parity-time symmetric coherent plasmonic absorber-amplifier. J. Appl. Phys. 117, 063106 (2015)

    Article  ADS  Google Scholar 

  21. Huang, C.Y., Zhang, R., Han, J.L., Zheng, J., Xu, J.Q.: Type-II perfect absorption and amplification modes with controllable bandwidth in combined PT-symmetric and conventional Bragg-grating structures. Phys. Rev. A. 22, 023842 (2014)

    Article  ADS  Google Scholar 

  22. Sun, Y., Tan, W., Li, H., Li, J., Chen, H.: Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett. 112, 143903 (2014)

    Article  ADS  Google Scholar 

  23. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  24. Alaeian, H., Dionne, J.A.: Parity-time-symmetric plasmonic metamaterials. Phys. Rev. A. 89, 033829 (2014)

    Article  ADS  Google Scholar 

  25. Gear, J., Liu, F., Chu, S.T., Rotter, S., Li, J.: Parity-time symmetry from stacking purely dielectric and magnetic slabs. Phys. Rev. A 91, 033825 (2015)

    Article  ADS  Google Scholar 

  26. Fu, Y., Xu, Y., Chen, H.: Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express 24, 1648–1657 (2016)

    Article  ADS  Google Scholar 

  27. Feng, L., Zhu, X., Yang, S., Zhu, H., Zhang, P., Yin, X., Wang, Y., Zhang, X.: Demonstration of a large-scale optical exceptional point structure. Opt. Express 22, 1760–1767 (2013)

    Article  ADS  Google Scholar 

  28. Yang, E., Lu, Y., Wang, Y., Dai, Y., Wang, P.: Unidirectional reflectionless phenomenon in periodic ternary layered material. Opt. Express 24, 14311–14321 (2016)

    Article  ADS  Google Scholar 

  29. Shen, Y., Deng, X.H., Chen, L.: Unidirectional invisibility in a two-layer non-PT-symmetric slab. Opt. Express 22, 19440–19447 (2014)

    Article  ADS  Google Scholar 

  30. Gu, X., Bai, R., Zhang, C., Jin, X.R., Zhang, Y.Q., Zhang, S., Lee, Y.P.: Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling. Opt. Express 25, 11778–11787 (2017)

    Article  ADS  Google Scholar 

  31. Bai, R., Zhang, C., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Switching the unidirectional refectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling. Sci. Rep. 7, 10742 (2017)

    Article  ADS  Google Scholar 

  32. Bai, R., Zhang, C., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling. Appl. Phys. Express 10, 112001 (2017)

    Article  ADS  Google Scholar 

  33. Yin, H., Bai, R., Gu, X., Zhang, C., Gu, G.R., Zhang, Y.Q., Jin, X.R., Lee, Y.P.: Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators. Opt. Commun. 414, 172–176 (2018)

    Article  ADS  Google Scholar 

  34. Liu, S.J., Zhang, C., Bai, R., Gu, X., Yin, H.D., Liu, Y.H., Zhang, Y.Q., Jin, X.R., Lee, Y.P.: Unidirectional reflectionlessness and nonreciprocal perfect absorption in optical waveguide system based on phase coupling between two photonic crystal cavities. J. Nonlinear Opt. Phys. Mater. 27, 1850004 (2018)

    Article  ADS  Google Scholar 

  35. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveria, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Article  ADS  Google Scholar 

  36. Huang, Y., Veronis, G., Min, C.: Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Opt. Express 23, 29882–29895 (2015)

    Article  ADS  Google Scholar 

  37. Huang, Y., Min, C., Veronis, G.: Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems. Opt. Express 24, 22219–22231 (2016)

    Article  ADS  Google Scholar 

  38. Zhang, C., Bai, R., Gu, X., Jin, Y., Zhang, Y.Q., Zhang, S., Jin, X.R., Zhang, S., Lee, Y.P.: Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling. J. Opt. 19, 125005 (2017)

    Article  ADS  Google Scholar 

  39. Zhang, C., Bai, R., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Unidirectional reflectionless propagation in plasmonic waveguide system based on phase coupling between two stub resonators. IEEE Photonics J. 9, 1–9 (2017)

    Google Scholar 

  40. Zhang, C., Bai, R., Gu, X., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Opt. Express 25, 24281–24289 (2017)

    Article  Google Scholar 

  41. Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18, 10360–10368 (2010)

    Article  ADS  Google Scholar 

  42. Chen, W., Chen, G.Y., Chen, Y.N.: Controlling Fano resonance of nanowire surface plasmons. Opt. Lett. 36, 3602–3604 (2011)

    Article  ADS  Google Scholar 

  43. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95, 213001 (2005)

    Article  ADS  Google Scholar 

  44. Chen, G.Y., Chen, Y.N.: Correspondence between entanglement and Fano resonance of surface plasmons. Opt. Lett. 37, 4023–4025 (2012)

    Article  ADS  Google Scholar 

  45. Zheng, H., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013)

    Article  ADS  Google Scholar 

  46. Zhou, L., Gong, Z.R., Liu, Y., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  47. Yan, W.B., Fan, H.: Control of single-photon transport in a one-dimensional waveguide by a single photon. Phys. Rev. A 90, 053807 (2014)

    Article  ADS  Google Scholar 

  48. Fratini, F., Ghobadi, R.: Full quantum treatment of a light diode. Phys. Rev. A 93, 023818 (2016)

    Article  ADS  Google Scholar 

  49. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Article  Google Scholar 

  50. Chen, G.Y., Lambert, N., Chou, C.H., Chen, Y.N., Nori, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    Article  ADS  Google Scholar 

  51. Chen, G.Y., Li, C.M., Chen, Y.N.: Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337–1339 (2012)

    Article  ADS  Google Scholar 

  52. Cheng, M.T., Song, Y.Y.: Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  ADS  Google Scholar 

  53. Kim, N.C., Ko, M.C., Choe, C.I.: Scattering of a single plasmon by two-level and V-type three-level quantum dot systems coupled to 1D waveguide. Plasmonics 10, 1477–1452 (2015)

    Google Scholar 

  54. Kim, N.C., Ko, M.C., Wang, Q.Q.: Single plasmon switching with n quantum dots system coupled to one-dimensional waveguide. Plasmonics 10, 611–615 (2014)

    Article  Google Scholar 

  55. Kim, N.C., Ko, M.C., Choe, S.I., Jang, C.J., Kim, G.J., Hao, Z.H., Li, J.B., Wang, Q.Q.: Interparticle coupling effects of two quantum dots system on the transport properties of a single plasmon. Plasmonics 13, 1089–1095 (2017)

    Article  Google Scholar 

  56. Kim, N.C., Ko, M.C., Choe, S.I., Hao, Z.H., Zhou, L., Li, J.B., Im, S.J., Ko, Y.H., Jo, C.G., Wang, Q.Q.: Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Nanotechnology 27, 465703 (2016)

    Article  ADS  Google Scholar 

  57. Kuo, P.C., Chen, G.Y., Chen, Y.N.: Scattering of nanowire surface plasmons coupled to quantum dots with azimuthal angle difference. Sci. Rep. 6, 37766 (2016)

    Article  ADS  Google Scholar 

  58. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  59. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79, 023838 (2009)

    Article  ADS  Google Scholar 

  60. Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. J. Opt. Soc. Am. B 30(10), 2640–2649 (2013)

    Article  ADS  Google Scholar 

  61. Kim, N.C., Ko, M.C.: Switching of a single photon by two \(\Lambda \)-type three-level quantum dots embedded in cavities coupling to one-dimensional waveguide. Plasmonics 10, 605–610 (2015)

    Google Scholar 

  62. Mirza, I.M.: Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Mod. Opt. 62(13), 1048–1060 (2015)

    Article  ADS  Google Scholar 

  63. Ginzburg, P.: Cavity quantum electrodynamics in application to plasmonics and metamaterials. Rev. Phys. 1, 120–139 (2016)

    Article  Google Scholar 

  64. Mirza, I.M., Hoskins, J.G., Schotland, J.C.: Chirality, band structure and localization in waveguide quantum electrodynamics. Phys. Rev. A 96(5), 053804 (2017)

    Article  ADS  Google Scholar 

  65. Hensen, M., Heilpern, T., Gray, S.K., Pfeiffer, W.: Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavities. ACS Photonics 5(1), 240–248 (2018)

    Article  Google Scholar 

  66. Wu, N., Zhang, C., Jin, X.R., Zhang, Y.Q., Lee, Y.P.: Unidirectional reflectionless phenomena in non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide. Opt. Express 26, 3839–3849 (2018)

    Article  ADS  Google Scholar 

  67. Qiu, D.X., Bai, R., Zhang, C., Xin, L.F., Zhou, X.Y., Zhang, Y.Q., Jin, X.R., An, C., Zhang, S.: Unidirectional reflectionlessness in a non-Hermitian quantum system of surface plasmon coupled to two plasmonic cavities. Quantum Inf. Process. 18, 28 (2019)

    Article  ADS  MATH  Google Scholar 

  68. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  69. Jin, X.R., Sun, L., Yang, X., Gao, J.: Quantum entanglement in plasmonic waveguides with near-zero mode indices. Opt. Lett. 38, 4078–4081 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11364044, 11864043), the Science and Technology Research Project of the Education Department of Jilin Province (Grant No. JJKH20170455KJ) and the Science and Technology Development Foundation of Jilin Province (Grant No. 20180101342JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Ri Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, DX., Zou, XY., Liu, Y. et al. Dual-band unidirectional reflectionlessness in non-Hermitian quantum system consisting of a gain and a loss plasmonic cavities. Quantum Inf Process 18, 269 (2019). https://doi.org/10.1007/s11128-019-2380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2380-9

Keywords

Navigation