Abstract
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all the side-channel attacks and significantly improve the secure transmission distance. However, the key generation rate is relatively low when taking finite-key-size effect into consideration. In this manuscript, we adopt the latest four-intensity decoy-state scheme combining the heralded pair-coherent sources to study the performance of the MDI-QKD. Moreover, through utilizing joint constraints and collective error estimation techniques, we can obviously improve the performance of practical MDI-QKD systems compared with those using weak coherent sources or heralded single-photon sources.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175–179 (1984)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)
Mayers, D.: Unconditional security in quantum cryptography. J. Assoc. Comput. Mach. 48, 351 (2001)
Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)
Yuen, H.P.: Quantum amplifiers, quantum duplicators and quantum cryptography. Quantum Semiclass. Opt. 8, 939 (1996)
Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)
Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)
Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, v: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)
Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)
Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)
Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)
Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)
Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)
Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)
Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)
Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)
Yu, Z.Y., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement-device-independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)
Wang, Q., Wang, X.B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Scientific Reports 4, 4612 (2014)
Wang, C., Song, X.T., Yin, Z.Q.: Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)
Wang, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.-F.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)
Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)
Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)
Yu, Z.W., Zhou, Y.H., Wang, X.B.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. Phys. Rev. A 91, 032318 (2015)
Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 96, 052337 (2017)
Zhang, C.H., Wang, D., Zhou, X.Y., Wang, S., Zhang, L.B., Yin, Z.Q., Chen, W., Han, Z.F., Guo, G.C., Wang, Q.: Proof-of-principle demonstration of parametric down-conversion source-based quantum key distribution over 40 dB channel loss. Opt. Express 26, 25921 (2018)
Mao, C.C., Zhou, X.Y., Zhu, J.R., Zhang, C.H., Zhang, C.M., Wang, Q.: Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with four-intensity decoy-state method. Opt. Express 26, 13289 (2018)
Agarwal, G.S.: Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission. Phys. Rev. Lett. 57, 827 (1986)
Zou, X.B., Pahlke, K., Mathis, W.: Creating the multidimensional entangled coherent states of two cavity modes. Eur. Phys. J. D 33, 297 (2005)
Dong, Y.L., Zou, Y.L., Guo, G.C.: Generation of pair coherent state using weak cross-Kerr media. Phys. Lett. A 372, 5677 (2008)
Zhang, S.L., Zou, X.B., Li, K., Jin, C.H., Guo, G.C.: Limitation of decoy-state Scarani–Acin–Ribordy–Gisin quantum-key-distribution protocols with a heralded single-photon source. Phys. Rev. A 76, 044304 (2007)
Dong, C., Zhao, S.H., Shi, L.: Measurement device-independent quantum key distribution with heralded pair coherent state. Quantum Inf. Process. 15, 4253 (2016)
Zhou, Y.H., Yu, Z.Y., Wang, X.B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100%. Phys. Rev. A 89, 052325 (2014)
Curty, M., Xu, F.H., Cui, W.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)
Hu, X.L., Zhou, Y.H., Yu, Z.W., Wang, X.B.: Practical measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 95, 032331 (2017)
Hu, X.L., Yu, Z.W., Wang, X.B.: Efficient measurement-device-independent quantum key distribution without vacuum sources. Phys. Rev. A 98, 032303 (2018)
Funding
National Key Research and Development Program of China (Grants No. 2018YFA0306400, 2017YFA0304100); National Natural Science Foundation of China (Grants No. 11774180, 61590932, 61705110, 11847215); China Postdoctoral Science Foundation (Grant No. 2018M642281); Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. 46002CX17792).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mao, CC., Zhang, CH., Zhang, CM. et al. Improving the performance of four-intensity decoy-state measurement-device-independent quantum key distribution via heralded pair-coherent sources. Quantum Inf Process 18, 290 (2019). https://doi.org/10.1007/s11128-019-2404-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2404-5