Abstract
Utilizing the highly correlated quantum NOON states of spins, we have implemented a proof-of-principle quantum thermometer using the NMR technique for measuring the variation of local magnetic field with the temperature. The system used was the star topology system of hexafluorophosphate molecules, and the thermometer showed a sensitivity of \(85\,\mathrm{nT}/^\circ \)C. Using the hexafluorophosphate and the trimethylphosphite spin systems, we have quantified the advantage of the quantum protocol over the classical one for measuring magnetic field. The quantum protocol showed the best performance for the sensing time of \(T_\mathrm{max} = 20\,\)ms, where the errors in the measurement scaled as the Heisenberg limit 1 / N. The thermometer implementation provided measurements in the temperature with errors scaling approximately with the Heisenberg limit, more precisely \(N^{-0.94}\).










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Modern Phys. 89, 035002 (2017)
Giovannetti, Vittorio, Lloyd, Seth, Maccone, Lorenzo: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)
Modi, Kavan, Cable, Hugo, Williamson, Mark, Vedral, Vlatko: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)
Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)
Girolami, Davide, Souza, Alexandre M., Giovannetti, Vittorio, Tufarelli, Tommaso, Filgueiras, Jefferson G., Sarthour, Roberto S., Soares-Pinto, Diogo O., Oliveira, Ivan S., Adesso, Gerardo: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)
Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
Israel, Yonatan, Rosen, Shamir, Silberberg, Yaron: Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014)
Napolitano, M., Koschorreck, M., Dubost, B., Behbood, N., Sewell, R.J., Mitchell, M.W.: Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011)
Jones, J.A.: Magnetic field sensing beyond the standard quantum limit using 10-Spin N00N states. Science 324, 1166–1168 (2009)
Simmons, Stephanie, Jones, Jonathan A., Karlen, Steven D., Ardavan, Arzhang, Morton, John J.L.: Magnetic field sensors using 13-spin cat states. Phys. Rev. A 82, 022330 (2010)
Shukla, Abhishek, Sharma, Manvendra, Mahesh, T.S.: NOON states in star-topology spin-systems: applications in diffusion studies and RF inhomogeneity mapping. Chem. Phys. Lett. 592, 227–231 (2014)
Stace, Thomas M.: Quantum limits of thermometry. Phys. Rev. A 82, 011611 (2010)
Xie, D., Xu, C., Wang, A.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)
Xie, D., Xu, C., Wang, A.: Optimal quantum thermometry by dephasing. Quantum Inf. Process. 16, 155 (2017)
Raitz, C., Souza, A.M., Auccaise, R., Sarthour, R.S., Oliveira, I.S.: Experimental implementation of a nonthermalizing quantum thermometer. Quantum Inf. Process. 14, 37–46 (2015)
Tham, W.K., Ferretti, H., Sadashivan, A.V., Steinberg, A.M.: Simulating and optimising quantum thermometry using single photons. Sci. Rep. 6, 38822 (2016). https://doi.org/10.1038/srep38822
Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013)
Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13(6), 2738–2742 (2013)
Dowling, J.P.: Quantum optical metrology the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008)
Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)
Afek, Itai, Ambar, Oron, Silberberg, Yaron: High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)
Khurana, Deepak, Unnikrishnan, Govind, Mahesh, T.S.: Spectral investigation of the noise influencing multiqubit states. Phys. Rev. A 94, 062334 (2016)
Aasi, J., Abadie, J., Zweizig, J.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)
Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043604 (2015)
Soares-Pinto, D.O., Auccaise, R., Maziero, J., Gavini-Viana, A., Serra, R.M., Céleri, L.C.: On the quantumness of correlations in nuclear magnetic resonance. Philos. Trans. R. Soc. A 370, 4821–4836 (2012)
Huang, Yun-Feng, Liu, Bi-Heng, Liang Peng, Yu-Hu, Li, Li Li, Li, Chuan-Feng, Guo, Guang-Can: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)
Pande, Varad R., Bhole, Gaurav, Khurana, Deepak, Mahesh, T.S.: Strong algorithmic cooling in large star-topology quantum registers. Phys. Rev. A 96, 012330 (2017)
Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance, 53. Wiley, Great Britain (2008)
Harris, Robin K.: Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View, pp. 193–194. Longman Scientific & Technical, Hong Kong (1986)
Jones, J.A.: NMR quantum computation. Prog. Nucl. Magn. Reson. Spectrosc. 38, 325–360 (2001)
Oliveira, Ivan S., Bonagamba, Tito J., Sarthour, Roberto S., Freitas, Jair C.C., de Azevedo, Eduardo R.: NMR Quantum Information Processing. Elsevier, The Netherlands (2007)
Schaffry, Marcus, Gauger, Erik M., Morton, John J.L., Fitzsimons, Joseph, Benjamin, Simon C., Lovett, Brendon W.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 1–5 (2010)
Webb, A.G.: Temperature measurements using nuclear magnetic resonance. Annu. Rep. NMR Spectrosc. 45, 1–67 (2002)
Bornais, J., Brownstein, S.: A low-temperature thermometer for \(^{1}\text{ H }\), \(^{19}\text{ F }\), and \(^{13}\text{ C }\). J. Magn. Reson. 29(2), 207–211 (1978)
Souza, Alexandre M., Alvarez, Gonzalo A., Suter, Dieter: Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011)
Suter, D., Alvarez, G.A.: Protecting quantum information against environmental noise. Rev. Modern Phys. 88, 041001 (2016)
Jarenwattananon, Nanette N., Glaggler, Stefan, Otto, Trenton, Melkonian, Arek, Morris, William, Burt, Scott R., Yaghi, Omar M., Bouchard, Louis-S: Thermal maps of gases in heterogeneous reactions. Nature 502, 537–540 (2013)
Acknowledgements
We acknowledge financial support from the Brazilian agencies CAPES and CNPq. This work was performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information Grant No. 465469/2014-0. AMS acknowledges support from FAPERJ (203.166/2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Uhlig, C.V.H.B., Sarthour, R.S., Oliveira, I.S. et al. Experimental implementation of an NMR NOON state thermometer. Quantum Inf Process 18, 294 (2019). https://doi.org/10.1007/s11128-019-2406-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2406-3