Skip to main content
Log in

Experimental implementation of an NMR NOON state thermometer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Utilizing the highly correlated quantum NOON states of spins, we have implemented a proof-of-principle quantum thermometer using the NMR technique for measuring the variation of local magnetic field with the temperature. The system used was the star topology system of hexafluorophosphate molecules, and the thermometer showed a sensitivity of \(85\,\mathrm{nT}/^\circ \)C. Using the hexafluorophosphate and the trimethylphosphite spin systems, we have quantified the advantage of the quantum protocol over the classical one for measuring magnetic field. The quantum protocol showed the best performance for the sensing time of \(T_\mathrm{max} = 20\,\)ms, where the errors in the measurement scaled as the Heisenberg limit 1 / N. The thermometer implementation provided measurements in the temperature with errors scaling approximately with the Heisenberg limit, more precisely \(N^{-0.94}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Modern Phys. 89, 035002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Giovannetti, Vittorio, Lloyd, Seth, Maccone, Lorenzo: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  3. Modi, Kavan, Cable, Hugo, Williamson, Mark, Vedral, Vlatko: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)

    Google Scholar 

  4. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)

    Article  Google Scholar 

  5. Girolami, Davide, Souza, Alexandre M., Giovannetti, Vittorio, Tufarelli, Tommaso, Filgueiras, Jefferson G., Sarthour, Roberto S., Soares-Pinto, Diogo O., Oliveira, Ivan S., Adesso, Gerardo: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  6. Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  7. Israel, Yonatan, Rosen, Shamir, Silberberg, Yaron: Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014)

    Article  ADS  Google Scholar 

  8. Napolitano, M., Koschorreck, M., Dubost, B., Behbood, N., Sewell, R.J., Mitchell, M.W.: Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011)

    Article  ADS  Google Scholar 

  9. Jones, J.A.: Magnetic field sensing beyond the standard quantum limit using 10-Spin N00N states. Science 324, 1166–1168 (2009)

    Article  ADS  Google Scholar 

  10. Simmons, Stephanie, Jones, Jonathan A., Karlen, Steven D., Ardavan, Arzhang, Morton, John J.L.: Magnetic field sensors using 13-spin cat states. Phys. Rev. A 82, 022330 (2010)

    Article  ADS  Google Scholar 

  11. Shukla, Abhishek, Sharma, Manvendra, Mahesh, T.S.: NOON states in star-topology spin-systems: applications in diffusion studies and RF inhomogeneity mapping. Chem. Phys. Lett. 592, 227–231 (2014)

    Article  ADS  Google Scholar 

  12. Stace, Thomas M.: Quantum limits of thermometry. Phys. Rev. A 82, 011611 (2010)

    Article  ADS  Google Scholar 

  13. Xie, D., Xu, C., Wang, A.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)

    Article  ADS  Google Scholar 

  14. Xie, D., Xu, C., Wang, A.: Optimal quantum thermometry by dephasing. Quantum Inf. Process. 16, 155 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Raitz, C., Souza, A.M., Auccaise, R., Sarthour, R.S., Oliveira, I.S.: Experimental implementation of a nonthermalizing quantum thermometer. Quantum Inf. Process. 14, 37–46 (2015)

    Article  ADS  Google Scholar 

  16. Tham, W.K., Ferretti, H., Sadashivan, A.V., Steinberg, A.M.: Simulating and optimising quantum thermometry using single photons. Sci. Rep. 6, 38822 (2016). https://doi.org/10.1038/srep38822

    Article  ADS  Google Scholar 

  17. Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013)

    Article  ADS  Google Scholar 

  18. Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13(6), 2738–2742 (2013)

    Article  ADS  Google Scholar 

  19. Dowling, J.P.: Quantum optical metrology the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008)

    Article  ADS  Google Scholar 

  20. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  21. Afek, Itai, Ambar, Oron, Silberberg, Yaron: High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Khurana, Deepak, Unnikrishnan, Govind, Mahesh, T.S.: Spectral investigation of the noise influencing multiqubit states. Phys. Rev. A 94, 062334 (2016)

    Article  ADS  Google Scholar 

  23. Aasi, J., Abadie, J., Zweizig, J.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)

    Article  ADS  Google Scholar 

  24. Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043604 (2015)

    Article  ADS  Google Scholar 

  25. Soares-Pinto, D.O., Auccaise, R., Maziero, J., Gavini-Viana, A., Serra, R.M., Céleri, L.C.: On the quantumness of correlations in nuclear magnetic resonance. Philos. Trans. R. Soc. A 370, 4821–4836 (2012)

    Article  ADS  MATH  Google Scholar 

  26. Huang, Yun-Feng, Liu, Bi-Heng, Liang Peng, Yu-Hu, Li, Li Li, Li, Chuan-Feng, Guo, Guang-Can: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)

    Article  ADS  Google Scholar 

  27. Pande, Varad R., Bhole, Gaurav, Khurana, Deepak, Mahesh, T.S.: Strong algorithmic cooling in large star-topology quantum registers. Phys. Rev. A 96, 012330 (2017)

    Article  ADS  Google Scholar 

  28. Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance, 53. Wiley, Great Britain (2008)

    Google Scholar 

  29. Harris, Robin K.: Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View, pp. 193–194. Longman Scientific & Technical, Hong Kong (1986)

    Google Scholar 

  30. Jones, J.A.: NMR quantum computation. Prog. Nucl. Magn. Reson. Spectrosc. 38, 325–360 (2001)

    Article  Google Scholar 

  31. Oliveira, Ivan S., Bonagamba, Tito J., Sarthour, Roberto S., Freitas, Jair C.C., de Azevedo, Eduardo R.: NMR Quantum Information Processing. Elsevier, The Netherlands (2007)

    Google Scholar 

  32. Schaffry, Marcus, Gauger, Erik M., Morton, John J.L., Fitzsimons, Joseph, Benjamin, Simon C., Lovett, Brendon W.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 1–5 (2010)

    Article  Google Scholar 

  33. Webb, A.G.: Temperature measurements using nuclear magnetic resonance. Annu. Rep. NMR Spectrosc. 45, 1–67 (2002)

    Article  ADS  Google Scholar 

  34. Bornais, J., Brownstein, S.: A low-temperature thermometer for \(^{1}\text{ H }\), \(^{19}\text{ F }\), and \(^{13}\text{ C }\). J. Magn. Reson. 29(2), 207–211 (1978)

    ADS  Google Scholar 

  35. Souza, Alexandre M., Alvarez, Gonzalo A., Suter, Dieter: Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011)

    Article  ADS  Google Scholar 

  36. Suter, D., Alvarez, G.A.: Protecting quantum information against environmental noise. Rev. Modern Phys. 88, 041001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Jarenwattananon, Nanette N., Glaggler, Stefan, Otto, Trenton, Melkonian, Arek, Morris, William, Burt, Scott R., Yaghi, Omar M., Bouchard, Louis-S: Thermal maps of gases in heterogeneous reactions. Nature 502, 537–540 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Brazilian agencies CAPES and CNPq. This work was performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information Grant No. 465469/2014-0. AMS acknowledges support from FAPERJ (203.166/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. H. B. Uhlig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhlig, C.V.H.B., Sarthour, R.S., Oliveira, I.S. et al. Experimental implementation of an NMR NOON state thermometer. Quantum Inf Process 18, 294 (2019). https://doi.org/10.1007/s11128-019-2406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2406-3

Keywords

Navigation