Abstract
In quantum mechanics, it is well known that the Heisenberg–Schrödinger uncertainty relations hold for two non-commutative observables and density operator. Recently some people start to focus on the uncertainty relations for two non-commutative non-Hermitian operators and density operator. In this paper, we introduce the generalized metric adjusted skew information, generalized metric adjusted correlation measure and the related quantities for non-Hermitian operators. Various properties of them are discussed. Finally, we establish several generalizations of uncertainty relation expressed in terms of the generalized metric adjusted skew information and obtain several results including previous results which can be given as corollaries of our non-Hermitian extensions of Heisenberg-type or Schrödinger-type uncertainty relations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. A 43, 172–198 (1927)
Schrödinger, E.: About Heisenberg uncertainty relation. Proc. Prussian Acad. Sci. Phys. Math. Sec. 19, 296–303 (1930)
Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910–918 (1963)
Luo, S., Zhang, Q.: On skew information. IEEE Trans. Inf. Theory 50, 1778–1782 (2004)
Luo, S.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)
Furuichi, S., Yanagi, K., Kuriyama, K.: Trace inequalities on a generalized Wigner–Yanase skew information. J. Math. Anal. Appl. 356, 179–185 (2009)
Furuichi, S.: Schrödinger uncertainty relation with Wigner–Yanase skew information. Phys. Rev. A 82, 034101 (2010)
Yanagi, K.: Uncertainty relation on Wigner–Yanase–Dyson skew information. J. Math. Anal. Appl. 365, 12–18 (2010)
Yanagi, K.: Wigner–Yanase–Dyson skew information and uncertainty relation. J. Phys. Conf. Ser. 201, 012015 (2010)
Ko, C.K., Yoo, H.J.: Uncertainty relation associated with a monotone pair skew information. J. Math. Anal. Appl. 383, 208–214 (2011)
Furuichi, S., Yanagi, K.: Schrödinger uncertainty relation, Wigner–Yanase–Dyson skew information and metric adjusted correlation measure. J. Math. Anal. Appl. 388, 1147–1156 (2012)
Hansen, F.: Metric adjusted skew information. Proc. Natl. Acad. Sci. USA 105, 9909–9916 (2008)
Gibilisco, P., Imparato, D., Isola, T.: Uncertainty principle and quantum Fisher information-II. J. Math. Phys. 48, 072109 (2007)
Gibilisco, P., Hansen, F., Isola, T.: On a correspondence between regular and non-regular operator monotone functions. Linear Algebra Appl. 430, 2225–2232 (2009)
Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81–96 (1996)
Yanagi, K.: Metric adjusted skew information and uncertainty relation. J. Math. Anal. Appl. 380, 888–892 (2011)
Gibilisco, P., Isola, T.: On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information. J. Math. Anal. Appl. 375, 270–275 (2011)
Yanagi, K., Furuichi, S., Kuriyama, K.: Uncertainty relations for generalized metric adjusted skew information and generalized metric adjusted correlation measure. J. Uncertain. Anal. Appl. 1, 12 (2013)
Müller, M., Rotter, I.: Phase lapses in open quantum systems and the non-Hermitian Hamilton operator. Phys. Rev. A 80(4), 042705 (2009)
Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor. 42, 153001 (2009)
Alber, G., Delgado, A., Gisin, N., Jex, I.: Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces. Quantum Phys. arXiv:quant-ph/0008022v1 (2000)
Long, G.L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45, 825 (2006)
Guo, Z.H., Cao, H.X., Chen, Z.L., Yin, J.C.: Operational properties and matrix representations of quantum measures. Chin. Sci. Bull. 56, 1671 (2011)
Guo, Z.H., Cao, H.X.: Existence and construction of a quantum channel with given inputs and outputs. Chin. Sci. Bull. 57, 4346–4350 (2012)
Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)
Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)
Moiseyev, N.: Non-Hermitian Quantum Mechanics. Cambridge University Press, Cambridge (2011)
Dou, Y.N., Du, H.K.: Generalizations of the Heisenberg and Schrödinger uncertainty relations. J. Math. Phys. 54, 103508 (2013)
Dou, Y.N., Du, H.K.: Note on the Wigner–Yanase–Dyson skew information. Int. J. Theor. Phys. 53, 952–958 (2014)
Li, Q., Cao, H.X., Du, H.K.: A generalization of Schrödinger’s uncertainty relation described by the Wigner–Yanase skew information. Quantum Inf. Process. 14, 1513–1522 (2015)
Chen, Z.L., Liang, L.L., Li, H.J., Wang, W.H.: A generalized uncertainty relation. Int. J. Theor. Phys. 54, 2644–2651 (2015)
Chen, Z.L., Liang, L.L., Li, H.J., Wang, W.H.: Two generalized Wigner–Yanase skew information and their uncertainty relations. Quantum Inf. Process. 15, 5107–5118 (2016)
Yanagi, K., Sekikawa, K.: Non-hermitian extensions of Heisenberg type and Schrödinger type uncertainty relations. J. Inequal. Appl. 2015, 381 (2015)
Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)
Acknowledgements
This subject was supported by the NNSF of China (Nos. 11701011, 61463001, 11761001, 11761003), the NSF of Ningxia (Nos. 2018AAC03106,2018AAC03107), the SRP for North Minzu University (Nos. 2017SXKY02, 2017KJ34), the First-Class Disciplines Foundation of Ningxia(No.NXYLXK2017B09), Ningxia Key Laboratory of Intelligent Information and Big Data Processing.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fan, Y., Cao, H., Wang, W. et al. Non-Hermitian extensions of uncertainty relations with generalized metric adjusted skew information. Quantum Inf Process 18, 309 (2019). https://doi.org/10.1007/s11128-019-2415-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2415-2