Skip to main content
Log in

Entanglement property of the Werner state in accelerated frames

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the entanglement property of a free Dirac field in a Werner state as seen by two relatively accelerated parties. We study the concurrence, negativity, mutual information and \(\pi \)-tangle of the tripartite system. We show how these entanglement properties depend on both the free parameter F, which is a real parameter called fidelity, and the acceleration parameter r. The degree of entanglement is degraded by the Unruh effect, but we notice that the Werner state always remains entangled even in the acceleration limit, and thus, it can become a good candidate to quantum teleportation in uniform acceleration frame. We notice that the entropy \(S(\rho _{A\, \mathrm{I}\, \mathrm{II}})\) decreases with the free parameter F, and also \(S(\rho _{A\, \mathrm{I}\, \mathrm{II}})\), \(S(\rho _{A})\) and \(S(\rho _{\mathrm{I}\, \mathrm{II}})\) are independent of the acceleration parameter r. The von Neumann entropy is not a good entanglement measure any more for this mixed state. We verify that the Werner state in a noninertial frame obeys the Coffman–Kundu–Wootters (CKW) monogamous inequality and find that two useful relations for the concurrence and negativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D. 14, 870 (1976)

    Article  ADS  Google Scholar 

  2. Bruschi, D.E., Louko, J., Martín-Martínez, E., Dragan, A., Fuentes, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  3. Davies, P.C.W.: Scalar production in Schwarzschild and Rindler metrics. J. Phys. A Math. Gen. 8, 609 (1975)

    Article  ADS  Google Scholar 

  4. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  5. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Fuentes, I., Mann, R.B., Martín-Martínez, E., Moradi, S.: Entanglement of Dirac fields in an expanding spacetime. Phys. Rev. D 82, 045030 (2010)

    Article  ADS  Google Scholar 

  8. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Alsing, P.M., Fuentes, I.: Observer dependent entanglement. Class. Quantum Grav. 29, 224001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hwang, M.R., Jung, E., Park, D.: Three-tangle in non-inertial frame. Class. Quantum Grav. 29(22), 224004 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  12. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, J., Jiang, J.: Multipartite entanglement of Fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  14. Qiang, W.C., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Multipartite entanglement of fermionic systems in noninertial frames revisited. arXiv:1711.04230v1 [quant-ph]

  15. Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86, 012306 (2012)

    Article  ADS  Google Scholar 

  16. Wang, J., Jiang, J.: Erratum: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 97, 029902 (2018)

    Article  ADS  Google Scholar 

  17. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2011)

    Article  ADS  Google Scholar 

  18. Yao, Y., Xiao, X., Ge, L., Wang, X.G., Sun, C.P.: Quantum Fisher information in noninertial frames. Phys. Rev. A 89, 042336 (2014)

    Article  ADS  Google Scholar 

  19. Khan, S.: Tripartite entanglement of fermionic system in accelerated frames. Ann. Phys. 348, 270 (2014)

    Article  ADS  Google Scholar 

  20. Khan, S., Khan, N.A., Khan, M.K.: Non-maximal tripartite entanglement degradation of Dirac and scalar fields in non-inertial frames. Commun. Theor. Phys. 61(3), 281 (2014)

    Article  Google Scholar 

  21. Bruschi, D.E., Dragan, A., Fuentes, I., Louko, J.: Particle and antiparticle bosonic entanglement in noninertial frames. Phys. Rev. D 86(2), 025026 (2012)

    Article  ADS  Google Scholar 

  22. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83(5), 052306 (2011)

    Article  ADS  Google Scholar 

  23. Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 1320 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University, Cambridge (1982)

    Book  Google Scholar 

  25. Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318 (2009)

    Article  ADS  Google Scholar 

  26. Qiang, W.C., Zhang, L.: Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames. Phys. Lett. B 742, 383 (2015)

    Article  ADS  Google Scholar 

  27. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019)

    Article  ADS  Google Scholar 

  28. Dong, Q., Torres-Arenas, A.J., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys. 14(2), 21603 (2019)

    Article  Google Scholar 

  29. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  30. Weinstein, Y.S.: Entanglement dynamics in three-qubit X states. Phys. Rev. A 82, 032326 (2010)

    Article  ADS  Google Scholar 

  31. Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  33. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  34. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  ADS  Google Scholar 

  35. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

  36. Downes, T.G., Fuentes, I., Ralph, T.C.: Entangling moving cavities in noninertial frames. Phys. Rev. Lett. 106, 210502 (2010)

    Article  Google Scholar 

  37. Bruschi, D.E., Louko, J., Fuentes, I.: Voyage to Alpha Centauri: entanglement degradation of cavity modes due to motion. Phys. Rev. D 85, 061701 (2012)

    Article  ADS  Google Scholar 

  38. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  39. Yu, T., Eberly, J.H.: Sudden death of entanglement: classical noise effects. Opt. Commun. 264, 393 (2006)

    Article  ADS  Google Scholar 

  40. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  41. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: J. Phys. B At. Mol. Opt. Phys. 40, 3401 (2007)

    Article  Google Scholar 

  43. Horn, R.A., Johnson, C.R.: Matrix Analysis, p. 205, 415, 441. Cambridge University Press, Cambridge (1987)

  44. Życzkowski, K.: Volume of the set of separable states. II. Phys. Rev. A 60, 3496 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  45. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  46. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for making invaluable and positive suggestions which have improved the manuscript greatly. This work is supported by Project 20190234-SIP-IPN, COFAA-IPN, Mexico, and the CONACYT project under Grant No. 288856-CB-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Explicit expressions for \(1-2\) and \(1-1\) tangles

Appendix A: Explicit expressions for \(1-2\) and \(1-1\) tangles

In this Appendix, we are going to write out explicitly the analytical expressions for these \(1-1\) and \(1-2\) tangles as follows:

$$\begin{aligned} N_{\mathrm{A}({\mathrm{I}})}= & {} \frac{1}{24} \left( 16 F \cos ^2(r)\right. \nonumber \\&\left. +\sqrt{8 (8 F-5) (8 F+1) \cos (2 r)+256 F (2 F-1)+18 \cos (4 r)+86}-2 (\cos (2 r)+7)\right) ,\nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned} N_{\mathrm{A}({\mathrm{II}})}= & {} \frac{1}{24} \left( (2-8 F) \cos (2 r)\right. \nonumber \\&\left. +\sqrt{-8 (8 F-5) (8 F+1) \cos (2 r)+256 F (2 F-1)+18 \cos (4 r)+86}+8 F-14\right) , \end{aligned}$$
(A2)
$$\begin{aligned} N_{{\mathrm{I}}({{\mathrm{II}}})}= & {} \frac{1}{4} \left( \sqrt{6-2 \cos (4 r)}-2\right) =\frac{1}{2}\left( \sqrt{\sin ^2(2 r)+1}-1\right) . \end{aligned}$$
(A3)
$$\begin{aligned} N_{\mathrm{A} ({\mathrm{I}}\, {{{\mathrm{II}}}})}= & {} -1 + 2 F, \end{aligned}$$
(A4)
$$ \begin{aligned} N_{{\mathrm{I}}(\mathrm{A}\, {{{\mathrm{II}}}})}= & {} \frac{1}{3} \Bigg \{-\text {Root}\Big [2 \#1^3+\#1^2 (2 F \cos (2 r)-6 F+\cos (2 r)-3)\nonumber \\&+\#1 \Big (-28 F^2 \sin ^2(r)-4 F^2 \sin ^2(r) \cos (2 r)\nonumber \\&+32 F \sin ^2(r)+8 F \sin ^2(r) \cos (2 r)-4 \sin ^2(r)-4 \sin ^2(r) \cos (2 r)\Big )\nonumber \\&+16 F^3 \sin ^4(r) \cos ^2(r)-24 F^2 \sin ^4(r) \cos ^2(r)\nonumber \\&+8 \sin ^4(r) \cos ^2(r) \& , 1\Big ]-\text {Root}\Big [2 \#1^3+\#1^2 (2 F \cos (2 r)\nonumber \\&+6 F-2 \cos (2 r)-6)+\#1 \Big (-28 F^2 \cos ^2(r)\nonumber \\&+4 F^2 \cos (2 r) \cos ^2(r)-4 F \cos ^2(r)+4 F \cos (2 r) \cos ^2(r)\nonumber \\&+\cos (2 r) \cos ^2(r)+5 \cos ^2(r)\Big )\nonumber \\&-16 F^3 \sin ^2(r) \cos ^4(r)+12 F \sin ^2(r) \cos ^4(r)+4 \sin ^2(r) \cos ^4(r) \& , 1\Big ]\Bigg \}, \end{aligned}$$
(A5)
$$ \begin{aligned} N_{{{{\mathrm{II}}}}(\mathrm{A}\, {\mathrm{I}})}= & {} \frac{1}{3} \Bigg \{-\text {Root}\Big [2 \#1^3+\#1^2 (-2 F \cos (2 r)+6 F+2 \cos (2 r)-6)\nonumber \\&+\#1 \Big (-28 F^2 \sin ^2(r)-4 F^2 \sin ^2(r) \cos (2 r)\nonumber \\&-4 F \sin ^2(r)-4 F \sin ^2(r) \cos (2 r)+5 \sin ^2(r)-\sin ^2(r) \cos (2 r)\Big )\nonumber \\&-16 F^3 \sin ^4(r) \cos ^2(r)+12 F \sin ^4(r) \cos ^2(r)\nonumber \\&+4 \sin ^4(r) \cos ^2(r) \& , 1\Big ]-\text {Root}\Big [2 \#1^3+\#1^2 (-2 F \cos (2 r)\nonumber \\&-6 F-\cos (2 r)-3)+\#1 \Big (-28 F^2 \cos ^2(r)\nonumber \\&+4 F^2 \cos (2 r) \cos ^2(r)+32 F \cos ^2(r)-8 F \cos (2 r) \cos ^2(r)\nonumber \\&+4 \cos (2 r) \cos ^2(r)-4 \cos ^2(r)\Big )\nonumber \\&+16 F^3 \sin ^2(r) \cos ^4(r)-24 F^2 \sin ^2(r) \cos ^4(r)+8 \sin ^2(r) \cos ^4(r) \& , 1\Big ]\Bigg \}. \end{aligned}$$
(A6)

It should be pointed out that those special symbols # and & that appeared in \(N_{{\mathrm{I}}(\mathrm{A}\, {\mathrm{II}})}\) and \(N_{{\mathrm{II}}(\mathrm{A}\, {\mathrm{I}})}\) are generated when we solve higher-order polynomial eigenvalue problems, but fortunately they do not affect the final results. On the other hand, we have reverified again why \(F\ge 1/2\) based on the result \(N_{\mathrm{A} ({\mathrm{I}}\, {\mathrm{II}})}=-1 + 2 F\ge 0\). However, in order to make the \(\pi (\rho _{\mathrm{A}({\mathrm{I}}\, {\mathrm{II}})})\) not less than zero, the \(F=0.5\) is excluded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, WC., Dong, Q., Mercado Sanchez, M.A. et al. Entanglement property of the Werner state in accelerated frames. Quantum Inf Process 18, 314 (2019). https://doi.org/10.1007/s11128-019-2421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2421-4

Keywords

Navigation