Skip to main content
Log in

Efficient quantum key distribution protocol based on classical–quantum polarized channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

To improve the efficiency of QKD systems, a new QKD protocol based on classical–quantum polarized channels is proposed in this article. By precoding the raw key with polar codes before communication, this protocol has higher code rate and lower time cost compared with the traditional ones. According to the attack strategies that eavesdroppers might employ, we have analyzed the protocol’s security under ideal and practical channel models. We prove that under proper channel parameter setting, the security of this protocol is not lower than BB84 under intercept strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hoi-Kwong, L., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  2. Lo, H.-K.: A simple proof of the unconditional security of quantum key distribution. J. Phys. A Math. Gen. 34(35), 6957–6967 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5(1), 3–28 (1992)

    Article  Google Scholar 

  4. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Workshop on the Theory and Application of of Cryptographic Techniques, pp. 410–423 (1993)

  5. Pearson, D.: High-speed QKD reconciliation using forward error correction. In: AIP Conference Proceedings, vol. 734, no. 1, pp. 299–302 (2004)

  6. Dixon, A.R., Sato, H.: High speed and adaptable error correction for megabit/s rate quantum key distribution. Sci. Rep. 4, 7275 (2014)

    Article  ADS  Google Scholar 

  7. Koyluoglu, O.O., El Gamal, H.: Polar coding for secure transmission and key agreement. IEEE Trans. Inf. Forensics Secur. 7(5), 1472–1483 (2012)

    Article  Google Scholar 

  8. Yan, S., Wang, J., Fang, J., Jiang, L., Wang, X.: An improved polar codes-based key reconciliation for practical quantum key distribution. Chin. J. Electron. 27(2), 250–255 (2018)

    Article  Google Scholar 

  9. Renes, J.M., Renner, R., Sutter, D.: Efficient one-way secret-key agreement and private channel coding via polarization. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 194–213 (2013)

  10. Jouguet, P., Kunz-Jacques, S.: High performance error correction for quantum key distribution using polar codes. Quantum Inf. Comput. 14(3–4), 329–338 (2014)

    MathSciNet  Google Scholar 

  11. Chou, R.A., Bloch, M.R., Abbe, E.: Polar coding for secret-key generation. IEEE Trans. Inf. Theory 61(11), 6213–6237 (2015)

    Article  MathSciNet  Google Scholar 

  12. Lee, S., Park, J., Heo, J.: Improved reconciliation with polar codes in quantum key distribution. Quantum Inf. Comput. 18(9–10), 795–813 (2018)

    MathSciNet  Google Scholar 

  13. Mink, A., Tang, X., Ma, L., Nakassis, T., Hershman, B., Bienfang, J.C. et al.: High-speed quantum key distribution system supports one-time pad encryption of real-time video. In: Quantum Information and Computation IV. Vol. 6244, p. 6244 (2006)

  14. Pedersen, T.B., Toyran, M.: High performance information reconciliation for QKD with CASCADE (2013). arXiv preprint arXiv:1307.7829

  15. Yuan, Z., Plews, A., Takahashi, R., Doi, K., Tam, W., Sharpe, A., et al.: 10-Mb/s quantum key distribution. J. Lightwave Technol. 36(16), 3427–3433 (2018)

    Article  ADS  Google Scholar 

  16. Milicevic, M., Chen, F., Zhang, L.M., Gulak, P.G.: Quasi-cyclic multi-edge LDPC codes for long-distance quantum cryptography. NPJ Quantum Inf. 4, 1–9 (2018)

    Article  ADS  Google Scholar 

  17. Wang, X., Zhang, Y., Yu, S., Guo, H.: High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code. Sci. Rep. 8(1), 10543 (2018)

    Article  ADS  Google Scholar 

  18. Wilde, M.M., Guha, S.: Polar codes for classical–quantum channels. IEEE Trans. Inf. Theory 59(2), 1175–1187 (2013)

    Article  MathSciNet  Google Scholar 

  19. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55(7), 3051–3073 (2009)

    Article  MathSciNet  Google Scholar 

  20. Fang, J., Che, Z., Jiang, Z. L., Yu, X., Yiu, S.M., Ren, K., ..., Chen, Z.: An efficient flicker-free FEC coding scheme for dimmable visible light communication based on polar codes. IEEE Photon. J. 9(3), 1–10 (2017)

  21. Tal, I., Vardy, A.: List decoding of polar codes. In: ISIT. pp. 1–5 (2011)

  22. Balatsoukas-Stimming, A., Parizi, M.B., Burg, A.: LLR-based successive cancellation list decoding of polar codes. IEEE Trans. Signal Process. 63(19), 5165–5179 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Guo, Y., Lee, M.H., Zeng, G.: Polar quantum channel coding with optical multi-qubit entangling gates for capacity-achieving channels. Quantum Inf. Process. 12(4), 1659–1676 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Guha, S.: Structured optical receivers to attain superadditive capacity and the Holevo limit. Phys. Rev. Lett. 106(24), 240502 (2011)

    Article  ADS  Google Scholar 

  25. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: International Symposium on Information Theory, ISIT 2004. Proceedings. p. 136. IEEE (2004)

  26. Biham, E., Boyer, M., Brassard, G., Van De Graaf, J., Mor, T.: Security of quantum key distribution against all collective attacks (1998). arXiv:quant-ph/9801022

  27. Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photon. 3(12), 696 (2009)

    Article  ADS  Google Scholar 

  28. Lita, A.E., Miller, A.J., Nam, S.W.: Counting near-infrared single-photons with 95% efficiency. Opt. Express 16(5), 3032–3040 (2008)

    Article  ADS  Google Scholar 

  29. Li, H., Zhang, L., You, L., Yang, X., Zhang, W., Liu, X., ... , Xie, X.: Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency. Opt. Express 23(13), 17301–17308 (2015)

  30. Zhang, W., You, L., Li, H., Huang, J., Lv, C., Zhang, L., ... , Xie, X.: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60(12), 120314 (2017)

  31. Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., ..., Imamoglu, A.: A quantum dot single-photon turnstile device. Science. 290(5500), 2282–2285 (2000)

  32. Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., ... , Gérard, J.M.: A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4(3), 174 (2010)

  33. Senellart, P., Solomon, G., White, A.: High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12(11), 1026 (2017)

    Article  ADS  Google Scholar 

  34. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zoe Lin Jiang or Xuan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Nature Science Foundation of China (Nos. 61771222, 61872109), the Basic Research Project of Shenzhen, China (No. JCYJ20170815145900474), the Key Technology Program of Shenzhen, China, (No. JSGG20170824163239586), the Project of Guangzhou Industry Leading Talents (No. CXLJTD-201607), and the Science and Technology Project of Guangzhou (No. 201707010253).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Fang, J., Lin, P. et al. Efficient quantum key distribution protocol based on classical–quantum polarized channels. Quantum Inf Process 18, 356 (2019). https://doi.org/10.1007/s11128-019-2423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2423-2

Keywords

Navigation