Skip to main content
Log in

Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, an orbital angular momentum (OAM)-encoded measurement device independent quantum key distribution (MDI-QKD) under atmospheric turbulence is analyzed. The turbulent effect on scattering the OAM states is quantified by the probability of receiving the initial OAM modes, in conjunction with Kolmogorov and non-Kolmogorov models. The key rates of the OAM-encoded MDI-QKD are obtained under various turbulent intensity. Simulation results show that with the increase in radial coordinate, the initial OAM states are gradually diverted to adjacent modes and eventually tend to be randomly distributed. Furthermore, the OAM-encoded MDI-QKD has a slightly longer maximum transmission distance than that of the polarization-encoded MDI-QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lo, H.K., Lütkenhaus, N.: Quantum cryptography: from theory to practice. Physics 63(4), 191–196 (2007)

    Google Scholar 

  2. Rongzhen, J., Shaojie, T., Chao, Z.: Analysis of statistical fluctuation in decoy state quantum key distribution system. Acta Phys. Sin. 61(5), 296–298 (2012)

    Google Scholar 

  3. Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices information theory. Quantum Inf. Comput. 4(5), 136 (2003)

    MATH  Google Scholar 

  4. Wang, M., Wu, R.B., Lin, J.T., Zhang, J.H., Fang, Z.W., Chai, Z.F., Sun, H.Y.: Chemo-mechanical polish lithography: a pathway to low loss large scale photonic integration on lithium niobate on insulator (LNOI). Quant. Eng. 1(1), e9 (2019)

    Article  Google Scholar 

  5. Yuan, Z.L.: Avoiding the blinding attack in QKD. Nat. Photonics 4(4), 800–801 (2010)

    Article  ADS  Google Scholar 

  6. Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  8. Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)

    Article  ADS  Google Scholar 

  9. Sun, S.H., Gao, M., Li, C.Y., et al.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)

    Article  ADS  Google Scholar 

  10. Da Silva, T.F., Vitoreti, D., Xavier, G., Amral, G., Temporão, G.P., Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2012)

    Article  Google Scholar 

  11. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L., Ma, X.F., Fejer, M.M., Peng, C.Z., Zhang, Q., Pan, J.W.: Experimental measurement- device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2012)

    Article  Google Scholar 

  12. Tang, Z.Y., Liao, Z.F., Xu, F.H., Qi, B., Li, Q., Lo, H.B.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 12(19), 190503 (2013)

    Article  Google Scholar 

  13. Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)

    Article  ADS  Google Scholar 

  14. Zhang, Y.C., Li, Z.Y., Yu, S., Gu, W.Y., Peng, X., Guo, H.: Continuous-variable measurement- device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  15. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  16. Qi, R.Y., Sun, Z., Lin, Z.S., Niu, P.H., Hao, W.T., Song, L.Y., Huang, Q., Gao, J.C., Yin, L.G., Long, G.L.: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8(1), 22 (2019)

    Article  ADS  Google Scholar 

  17. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.U.: Measurement-device-independent quantum secure direct communication. arXiv:1805.07228 preprint (2018)

  18. Niu, P.H., Zhou, Z.R., Lin, Z.S., Sheng, Y.B., Yin, L.B., Long, G.L.: Measurement- device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)

    Article  Google Scholar 

  19. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, G.J., Zeilinger, A.: Weinfurter: experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)

    Article  ADS  Google Scholar 

  20. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y., Cai, X.D., Xu, P., Pan, G.S., Jia, J.J., Huang, Y.M., Yin, H., Chen, Y.A., Peng, C.Z., Pan, J.W.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488(7410), 185 (2012)

    Article  ADS  Google Scholar 

  21. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., Zhou, Y.H., Jing, C.S., Mao, Y.Q., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D.A., Zhou, F., Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  22. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Wang, J.Y., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549, 7670 (2017)

    Article  Google Scholar 

  23. Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Nature 3, 30 (2017)

    Google Scholar 

  24. Capraro, I., Tomaello, A., Dall’Arche, A., Gerlin, F., Ursin, R., Vallone, G., Villoresi, P.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)

    Article  ADS  Google Scholar 

  25. Vallone, G., Marangon, D.G., Canale, M., Savorgnan, I., Bacco, D., Barbieri, M., Calimani, S., Barbieri, C., Laurenti, N., Villoresi, P.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91(4), 6206–6207 (2015)

    Article  Google Scholar 

  26. Goyal, S., Ibrahim, A.H., Roux, F.S., Konrad, T., Forbes, A.: Experimental orbital angular momentum-based quantum key distribution through turbulence. arXiv:1412.0788

  27. Wang, L., Zhao, S.M., Gong, L.Y., Cheng, W.W.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 238–245 (2015)

    Google Scholar 

  28. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  29. He, R., An, X.: Geometric transformations of optical orbital angular momentum spatial modes. Sci. CHINA Phys. Mech. Astron. 61(2), 020314 (2018)

    Article  ADS  Google Scholar 

  30. Tyler, G.A., Boyd, R.W.: Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett. 34(2), 142–144 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. Dong is supported by the National Natural Science Foundation of China (Grant No. 11704412). C. Dong is supported by Key Research and Development Program of Shaanxi (Program No. 2019ZDLGY09-01), the Foundation of State Key Laboratory of Cryptology (Grant No. MMKFKT201823) and Foundation of National University of Defense and Technology (Grant No. ZK17-02-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Zhao, SH., Dong, C. et al. Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf Process 18, 304 (2019). https://doi.org/10.1007/s11128-019-2424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2424-1

Keywords

Navigation