Skip to main content
Log in

New quantum key agreement protocols based on Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a new two-party quantum key agreement (QKA) protocol based on Bell states. The participant transmits Bell states directly by inserting decoy photons in them randomly. The protocol is secure against the outsider attack and participant attack. Finally, it is generalized to multi-party QKA based on Bell states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  2. Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  8. Dušek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  12. Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)

    Article  MATH  Google Scholar 

  13. Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jiang, D.-H., Xu, Y.-L., Xu, G.-B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, T.-Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signature. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  16. Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

    Google Scholar 

  17. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  18. Yang, Y.-G., Liu, Z.-C., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)

    Article  ADS  Google Scholar 

  19. Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

    Article  ADS  MATH  Google Scholar 

  20. Yang, Y.-G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)

    Article  ADS  Google Scholar 

  22. Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

    Article  Google Scholar 

  24. Yang, Y.-G., Guo, X.-P., Xu, G., Chen, X.-B., Li, J., Zhou, Y.-H., Shi, W.-M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)

    Article  Google Scholar 

  25. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)

    Article  Google Scholar 

  27. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Huang, W., Wen, Q.-Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Liu, W.-J., Xu, Y., Yang, C.-N., Gao, P.-P., Yu, W.-B.: An efficient and secure arbitrary N-party quantum key agreement protocol using Bell states. Int. J. Theor. Phys. 57, 195–207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  32. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, D.-S., Ma, W.-P., Wang, L.-L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. He, Y.-F., Ma, W.-P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  MATH  Google Scholar 

  39. Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states. Quantum Inf. Process. 17, 103 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wang, S.-S., Xu, G.-B., Liang, X.-Q., Wu, Y.-L.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys. 57(12), 3716–3726 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, N.-R., Min, S.-Q., Chen, H.-Y., Gong, L.-H.: Three-party quantum key agreement protocol with seven-qubit entangled states. Int. J. Theor. Phys. 57, 3505–3513 (2018)

    Article  MATH  Google Scholar 

  42. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  43. Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: Bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurc. Chaos. 26(11), 1630031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liang, X., Gao, F., Zhou, C.-B., Wang, Z., Yang, X.-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Differ. Equ. 2018(25) (2018)

  47. Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic Sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yin, C., Cheng, Y.H., Zhong, S.M., Bai, Z.B.: Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems. Complexity 21(6), 363–373(2016)

    Article  MathSciNet  Google Scholar 

  51. Liu, F., Mao, S.Z., Wu, H.X.: On rough singular integrals related to homogeneous mappings. Collect. Math. 67(1), 113–132 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liu, F., Chen, T., Wu, H.X.: A note on the endpoint regularity of the Hardy-littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhou, J.P., Sang, C.Y., Li, X., Fang, M.Y., Wang, Z.: H consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)

    MathSciNet  Google Scholar 

  54. Liu, F., Wang, F.: Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Math. Sin. (Engl. Ser.). 32(4), 507–520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Cui, Y.J.: Existence of solutions for coupled integral boundary value problem at resonance. Publ. Math. Debr. 89(1–2), 73–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Cui, Y.J., Zou, Y.M.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Modell. Control. 21(6), 828–838 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for Hamiltonian structure of Nls-Mkdv hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu, F., Wu, H.X.: L-p bounds for marcinkiewicz integrals associated to homogeneous mappings. Monatshefte Fur Mathematik. 181(4), 875–906 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. Li, X.P., Lin, X.Y., Lin, Y.Q.: Lyapunov-Type conditions and stochastic differential equations driven by Gbrownian motion. J. Math. Anal. Appl. 439(1), 235–255 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, F., Zhang, D.Q.: Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces. Math. Inequal. Appl. 19(2), 499–522 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Zhao, Y., Zhang, W.H.: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise. J. Syst. Sci. Complex. 29(4), 946–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435(1), 593–605 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44(1), 245–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Liu, F., Zhang, D.Q.: Parabolic marcinkiewicz integrals associated to polynomials compound curves and extrapolation. Bull. Korean Math. Soc. 52(3), 771–788 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ling, S.T., Cheng, X.H., Jiang, T.S.: An algorithm for coneigenvalues and coneigenvectors of quaternion matrices. AACA 25(2), 377–384 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Liu, F., Wu, H.X., Zhang, D.Q.: L-p bounds for parametric marcinkiewicz integrals with mixed homogeneity. Math. Inequal. Appl. 18(2), 453–469 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Gao, M., Sheng, L., Zhang, W.H.: Stochastic H-2/H-infinity control of nonlinear systems with time-delay and state-dependent noise. Appl. Math. Comput. 266, 429–440 (2015)

    MathSciNet  MATH  Google Scholar 

  69. Li, Y.X., Huang, X., Song, Y.W., Lin, J.N.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurcation Chaos. 25(11), 1550151 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  70. Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Liu, F.: Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces, Revista de la Real Academia de Ciencias Exactas. Fisicas y Nat. Ser. A. Math. 112(2), 593–614 (2018)

    Google Scholar 

  72. Wang, W., Zhang, T.Q.: Caspase-1-mediated pyroptosis of the predominance for driving CD4++ T cells death: a nonlocal spatial mathematical model. Bull. Math. Biol. 80(3), 540–582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Li, H.J., Zhu, Y.L., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326, 1–15 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Cui, Y.J., Ma, W.J., Sun, Q., Su, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Modell. Control. 23(1), 31–39 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  75. Liu, F., Mao, S.Z.: L-p bounds for nonisotropic marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 99(3), 380–398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tramontana, F., Elsadany, A.A., Xin, B.G., Agiza, H.N.: Local stability of the cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  77. Cui, Y.J., Ma, W.J., Wang, X.Z., Su, X.W.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. (9), 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  78. Tan, C., Zhang, W.H.: On observability and detectability of continuous-time stochastic Markov jump systems. J. Syst. Sci. Complex. 28(4), 830–847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yan, Z.G., Zhang, G.S., Wang, J.K., Zhang, W.H.: State and output feedback finite-time guaranteed cost control of linear it stochastic systems. J. Syst. Sci. Complex. 28(4), 813–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. Li, L., Wang, Z., Li, Y.X., Shen, H., Lu, J.W.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)

    MathSciNet  MATH  Google Scholar 

  81. Jiang, D.-H., Wang, X.-J., Xu, G.-B., Lin, J.-Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201810); Beijing Natural Science Foundation (Grant No. 4182006); Beijing Natural Science Foundation (Grant No. 4182006); the National Natural Science Foundation of China (Grant Nos. 61671087, U1636106, 61602019, 61571226, 61701229, 61702367); Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802); Jiangsu postdoctoral science foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YG., Li, BR., Li, D. et al. New quantum key agreement protocols based on Bell states. Quantum Inf Process 18, 322 (2019). https://doi.org/10.1007/s11128-019-2434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2434-z

Keywords

Navigation