Skip to main content
Log in

An optimized quantum circuit for converting from sign–magnitude to two’s complement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nowadays, one of the critical issues to implement quantum algorithms is the required number of elementary gates, qubits and delay. Current quantum computers and simulators are mainly prototypes, and there is a lack of computational resources. Therefore, it is necessary to optimize the quantum operations to reduce the necessary number of gates and qubits. This work presents a novel reversible circuit which is able to convert signed binary numbers to two’s complement of N digits in a quantum environment. The depth of the circuit is O(log N). It is based on the fastest out-of-place carry look-ahead addition quantum circuit currently available. This addition circuit has been adapted to make the conversion using the minimum number of gates and qubits, being faster than other adder circuits. A robust metric has been used to measure the quantum cost, delay, ancilla inputs and garbage outputs of the proposed converter. Moreover, it has been compared with others described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baugh, C.R., Wooley, B.A.: A two’s complement parallel array multiplication algorithm. IEEE Trans. Comput. 100(12), 1045–1047 (1973)

    Article  Google Scholar 

  2. Chaudhuri, A., Sultana, M., Sengupta, D., Chaudhuri, A.: A novel reversible two’s complement gate (TCG) and its quantum mapping. In: Devices for Integrated Circuit (DevIC), 2017, pp. 252–256. IEEE (2017)

  3. Chaudhuri, A., Sultana, M., Sengupta, D., Chaudhuri, C., Chaudhuri, A.: A reversible approach to two’s complement addition using a novel reversible TCG gate and its 4 dot 2 electron QCA architecture. Microsyst. Technol. 25(5), 1965–1975 (2019)

    Article  Google Scholar 

  4. Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit (2004). arXiv preprint arXiv:quant-ph/0410184

  6. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry look-ahead adder (2004). arXiv preprint arXiv:quant-ph/0406142

  7. Gupta, A., Singla, P., Gupta, J., Maheshwari, N.: An improved structure of reversible adder and subtractor (2013). arXiv preprint arXiv:1306.1889

  8. Haghparast, M., Jassbi, S.J., Navi, K., Hashemipour, O.: Design of a novel reversible multiplier circuit using hng gate in nanotechnology. In: World Appl. Sci. J. Citeseer (2008)

  9. Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)

    Article  Google Scholar 

  10. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, M.Z.: Fault tolerant reversible logic synthesis: carry look-ahead and carry-skip adders. In: International Conference on Advances in Computational Tools for Engineering Applications, 2009 (ACTEA’09). pp. 396–401. IEEE (2009)

  11. Khosropour, A., Aghababa, H., Forouzandeh, B.: Quantum division circuit based on restoring division algorithm. In: 2011 Eighth International Conference on Information Technology: New Generations, pp. 1037–1040. IEEE (2011)

  12. Kianpour, M., Sabbaghi-Nadooshan, R.: Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. J. Comput. Electron. 16(2), 459–472 (2017)

    Article  Google Scholar 

  13. Koren, I.: Computer Arithmetic Algorithms. AK Peters/CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  14. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5(2), 134–140 (2009)

    Article  Google Scholar 

  15. Lemr, K., Bartkiewicz, K., Cernoch, A., Duek, M., Soubusta, J.: Experimental implementation of optimal linear-optical controlled-unitary gates. Phys. Rev. Lett. 114(15), 153602 (2015)

    Article  ADS  Google Scholar 

  16. Li, R., Alvarez-Rodriguez, U., Lamata, L., Solano, E.: Approximate quantum adders with genetic algorithms: an IBM quantum experience. Quantum Meas. Quantum Metrol. 4(1), 1–7 (2017)

    Article  ADS  Google Scholar 

  17. Ling, H.: High-speed binary adder. IBM J. Res. Dev. 25(3), 156–166 (1981)

    Article  MathSciNet  Google Scholar 

  18. Lisa, N.J., Babu, H.M.H.: Design of a compact reversible carry look-ahead adder using dynamic programming. In: 2015 28th International Conference on VLSI Design (VLSID), pp. 238–243. IEEE (2015)

  19. Markov, I.L., Saeedi, M.: Constant-optimized quantum circuits for modular multiplication and exponentiation (2012). arXiv preprint arXiv:1202.6614

  20. Mazumder, M.: Synthesis of quantum circuit for full adder using khan gate. Int. J. Appl. Inn. Eng. Manag. (IJAIEM) 6(6), 226–232 (2017)

    MathSciNet  Google Scholar 

  21. Moghimi, S., Reshadinezhad, M.R.: A novel 4\(\times 4 \) universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrics. Int. J. Mod. Educ. Comput. Sci. 7(11), 28–34 (2015)

    Google Scholar 

  22. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  Google Scholar 

  23. Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Universitatis, Series: Electronics and Energetics 31(2), 279–285 (2018)

    Google Scholar 

  24. Montaser, R., Younes, A., Abdel-Aty, M.: New design of reversible full adder/subtractor using \( r \) gate (2017). arXiv preprint arXiv:1708.00306

  25. Murali, K., Sinha, N., Mahesh, T., Levitt, M.H., Ramanathan, K., Kumar, A.: Quantum-information processing by nuclear magnetic resonance: experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system. Phys. Rev. A 66(2), 022313 (2002)

    Article  ADS  Google Scholar 

  26. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  27. Orts, F., Ortega, G., Garzón, E.M.: A quantum circuit for solving divisions using Grover’s search algorithm. In: Proceedings of 18th International Conference on Computational and Mathematical Methods in Science and Engineering (2018)

  28. Orts, F., Ortega, G., Garzón, E.M.: A faster half subtractor circuit using reversible quantum gates. Baltic J. Mod. Comput. 7(1), 99–111 (2019)

    Article  Google Scholar 

  29. Rahmati, M., Houshmand, M., Kaffashian, M.H.: Novel designs of a carry/borrow look-ahead adder/subtractor using reversible gates. J. Comput. Electron. 16(3), 856–866 (2017)

    Article  Google Scholar 

  30. Shukla, V., Singh, O., Mishra, G., Tiwari, R.: Design of a 4-bit 2’s complement reversible circuit for arithmetic logic unit applications. In: The International Conference on Communication, Computing and Information Technology (ICCCMIT), Special Issue of International Journal of Computer Applications, pp. 1–5 (2012)

  31. Takahashi, Y., Kunihiro, N.: A linear-size quantum circuit for addition with no ancillary qubits. Quantum Inf. Comput. 5(6), 440–448 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Takahashi, Y., Kunihiro, N.: A fast quantum circuit for addition with few qubits. Quantum Inf. Comput. 8(6), 636–649 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded fan-out. Quantum Inf. Comput. 10(9), 872–890 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Talib, G.H.B., El-Maleh, A.H., Sait, S.M.: Design of fault tolerant adders: a review. Arab. J. Sci. Eng. 43(12), 6667–6692 (2018)

    Article  Google Scholar 

  35. Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. In: Transactions on Computational Science XXVII, pp. 10–34. Springer (2016)

  36. Thapliyal, H., Jayashree, H., Nagamani, A., Arabnia, H.R.: Progress in reversible processor design: a novel methodology for reversible carry look-ahead adder. In: Transactions on Computational Science XVII, pp. 73–97. Springer (2013)

  37. Theresal, T., Sathish, K., Aswinkumar, R.: A new design of optical reversible adder and subtractor using mzi. Int. J. Sci. Res. Publ. (IJSRP) 5(4) (2015)

  38. Toffoli, T.: Reversible computing. In: International Colloquium on Automata, Languages, and Programming, pp. 632–644. Springer (1980)

  39. Wang, F., Luo, M., Li, H., Qu, Z., Wang, X.: Improved quantum ripple-carry addition circuit. Sci. China Inf. Sci. 59, 042406 (2016)

    Article  Google Scholar 

  40. Wang, J., Choi, K.: A carry look-ahead adder designed by reversible logic. In: SoC Design Conference (ISOCC), 2014 International, pp. 216–217. IEEE (2014)

  41. Williams, C.P.: Explorations in quantum computing. Springer, Berlin (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Spanish Ministry of Science throughout Project RTI2018-095993-BI00, by J. Andalucía through Project P12-TIC301 and by the European Regional Development Fund (ERDF). F. Orts is supported by an FPI Fellowship (attached to Project TIN2015-66680-C2-1-R) from the Spanish Ministry of Education. The authors wish to thank N.C. Cruz for his valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Orts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orts, F., Ortega, G. & Garzón, E.M. An optimized quantum circuit for converting from sign–magnitude to two’s complement. Quantum Inf Process 18, 332 (2019). https://doi.org/10.1007/s11128-019-2447-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2447-7

Keywords

Navigation