Skip to main content
Log in

Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study presents a bidirectional quantum teleportation of two quantum states with an arbitrary number of qubits, n, for the first time. This protocol utilizes a particular state with 4n qubits as a quantum channel. The required operators include CNOT, Paulis and single-qubit measurements. In this paper, we also present a comprehensive noise analysis for the proposed protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)

    Article  ADS  Google Scholar 

  5. Yang, C.-P., Chu, S.-I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)

    Article  ADS  Google Scholar 

  6. Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  7. Xin-Wei, Z., Hai-Yang, S., Gang-Long, M.: Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state (2010). arXiv preprint arXiv:1006.0052

  8. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  9. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deng, F.-G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F.-G., Zhou, H.-Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337(4–6), 329–334 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Li, Y.-H., Li, X.-L., Sang, M.-H., Nie, Y.-Y., Wang, Z.-S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14(10), 3835–3844 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportation of an \(n\)-qubit quantum state. Quantum Inf. Process. 16(12), 292 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)

    Article  ADS  Google Scholar 

  18. Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ-class state by using a \(d\)-dimensional (\(n\)+ 2)-particle nonmaximally entangled state as the quantum channel. Sci. China Phys. Mech. Astron. 54(3), 484–490 (2011)

    Article  ADS  Google Scholar 

  19. Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  20. Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)

    Article  MATH  Google Scholar 

  21. Wang, J.-W., Shu, L.: Bidirectional quantum controlled teleportation of qudit state via partially entangled GHZ-type states. Int. J. Mod. Phys. B 29(18), 1550122 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hassanpour, S., Houshmand, M.: Bidirectional quantum controlled teleportation by using epr states and entanglement swapping (2015). arXiv preprint arXiv:1502.03551

  23. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  MATH  Google Scholar 

  25. Li, Y., Jin, X.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Li, Y., Nie, L., Li, X., Sang, M.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)

    Article  MATH  Google Scholar 

  27. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary \(n\)-qubit information state. Int. J. Theor. Phys. 55(4), 2061–2070 (2016)

    Article  MATH  Google Scholar 

  30. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the Danube. Nature 430(7002), 849–849 (2004)

    Article  ADS  Google Scholar 

  32. Yin, J., Ren, J.-G., Lu, H., Cao, Y., Yong, H.-L., Wu, Y.-P., Liu, C., Liao, S.-K., Zhou, F., Jiang, Y., et al.: Quantum teleportation and entanglement distribution over 100-km free-space channels. Nature 488(7410), 185–188 (2012)

    Article  ADS  Google Scholar 

  33. Ma, X.-S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E., et al.: Quantum teleportation over 143 km using active feed-forward. Nature 489(7415), 269–273 (2012)

    Article  ADS  Google Scholar 

  34. Sun, Q.C., Mao, Y.L., Chen, S.J., Zhang, W., Jiang, Y.F., Zhang, Y.B., Zhang, W.J., Miki, S., Yamashita, T., Terai, H., et al.: Quantum teleportation with independent sources over an optical fibre network (2016). arXiv preprint arXiv:1602.07081

  35. Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single bell state. Phys. Rev. A 93(6), 062305 (2016)

    Article  ADS  Google Scholar 

  36. Popescu, S.: Bell’s inequalities versus teleportation: what is nonlocality? Phys. Rev. Lett. 72(6), 797 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Horodecki, M., Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Sangchul, O., Lee, S., Lee, H.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  39. Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Kim, H., Park, D.K., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger–Horne–Zeilinger versus \(W\) states: quantum teleportation through noisy channels. Phys. Rev. A 78(1), 012312 (2008)

    Article  ADS  Google Scholar 

  40. Hong, W.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)

    Article  MATH  Google Scholar 

  41. Sang, M.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)

    Article  MATH  Google Scholar 

  42. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)

    Article  ADS  Google Scholar 

  44. Makhlin, Y., Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  MATH  Google Scholar 

  45. Zhong-Fang, C., Jin-Ming, L., Lei, M.: Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise. Chin. Phys. B 23(2), 020312 (2013)

    Google Scholar 

  46. Li, J.-F., Liu, J.-M., Xin-Ye, X.: Deterministic joint remote preparation of an arbitrary two-qubit state in noisy environments. Quantum Inf. Process. 14(9), 3465–3481 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Li, J.-F., Liu, J.-M., Feng, X.-L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15(5), 2155–2168 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Houshmand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H. et al. Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf Process 18, 353 (2019). https://doi.org/10.1007/s11128-019-2456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2456-6

Keywords

Navigation