Skip to main content

Advertisement

Log in

Quantum speedup for pool-based active learning

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Active learning aims to select the most informative samples to train an accurate classifier with minimum cost of labeling. It is widely used in many machine learning systems, where there are a large amount of unlabeled data, but it is difficult or expensive to obtain their labels due to the involvement of human efforts. However, active learning is time-consuming, particularly for the applications those have a great number of unlabeled samples, such as image retrieval, text mining and speech recognition. Thus, it is crucial to speed up the active learning algorithm. In this paper, we propose a quantum version of active learning algorithm, which converts a classical active learning to its quantum counterpart. We focus on the pool-based active learning, which is one of the most popular branches of active learning. The proposed quantum active learning algorithm can achieve quadratic speedup over the classical pool-based active learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beatty, G., Kochis, E., Bloodgood, M.: The use of unlabeled data versus labeled data for stopping active learning for text classification. In: International Conference on Semantic Computing (ICSC), pp. 287–294. IEEE (2019)

  2. Liu, R., Wang, Y., Baba, T., Masumoto, D., Nagata, S.: SVM-based active feedback in image retrieval using clustering and unlabeled data. Pattern Recognit. 41(8), 2645–2655 (2008)

    Article  MATH  Google Scholar 

  3. Qi, Y., Zhang, G.: Strategy of active learning support vector machine for image retrieval. IET Comput. Vis. 10(1), 87–94 (2016)

    Article  Google Scholar 

  4. Chen, G., Wang, T.J., Gong, L.Y., Herrera, P.: Multi-class support vector machine active learning for music annotation. Int. J. Innov. Comput. I. 6(3), 921–930 (2010)

    Google Scholar 

  5. Li, X., Guo, Y.: Adaptive active learning for image classification. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 859–866. IEEE (2013)

  6. Yuan, J., Hou, X., Xiao, Y., Cao, D., Guan, W., Nie, L.: Multi-criteria active deep learning for image classification. Knowl. Based Syst. 172, 86–94 (2019)

    Article  Google Scholar 

  7. Li, L., Jin, X., Pan, S.J., Sun, J.T.: Multi-domain active learning for text classification. In: International Conference on Knowledge Discovery and Data Mining(KDD), pp. 1086–1094. ACM (2012)

  8. Goudjil, M., Koudil, M., Bedda, M., Ghoggali, N.: A novel active learning method using SVM for text classification. Int. J. Autom. Comput. 15(3), 290–298 (2018)

    Article  Google Scholar 

  9. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: International Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079 (2008)

  10. Kholghi, M., Sitbon, L., Zuccon, G., Nguyen, A.: External knowledge and query strategies in active learning: a study in clinical information extraction. In: International Conference on Information and Knowledge Management, pp. 143–152 (2015)

  11. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  ADS  MATH  Google Scholar 

  12. Li, K., Qiu, D., Li, L., Zheng, S., Rong, Z.: Application of distributed semi-quantum computing model in phase estimation. Inf. Process. Lett. 120, 23–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yu, C.H., Gao, F., Wang, Q.L., Wen, Q.Y.: Quantum algorithm for association rules mining. Phys. Rev. A 94(4), 042–311 (2016)

    Article  Google Scholar 

  14. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  Google Scholar 

  15. Ruan, Y., Xue, X., Liu, H., Tan, J., Li, X.: Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. Int. J. Theor. Phys. 56(11), 3496–3507 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ezhov A.A., Ventura D.: Quantum neural networks. In: Kasabov, N. (ed.) Future Directions for Intelligent Systems and Information Sciences. Studies in Fuzziness and Soft Computing, vol 45. Physica, Heidelberg (2000). https://doi.org/10.1007/978-3-7908-1856-7_11

  17. Cheng, S., Chen, J., Wang, L.: Quantum entanglement: from quantum states of matter to deep learning. Physics 46, 416–423 (2017)

    Google Scholar 

  18. Aimeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150–502 (2009)

    Article  MathSciNet  Google Scholar 

  20. Weinstein, M., Meirer, F., Hume, A., Sciau, P., Shaked, G., Hofstetter, R., Persi, E., Mehta, A., Horn, D.: Analyzing big data with dynamic quantum clustering. arXiv:1310.2700 (2013)

  21. Dong, D., Chen, C., Chen, Z.: Quantum reinforcement learning. IEEE Trans. Syst. Man Cybern. B 38(5), 1207–1220 (2008)

    Article  Google Scholar 

  22. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032–301 (2017)

    Article  Google Scholar 

  23. Chen, C., Dong, D., Chen, Z.: Quantum computation for action selection using reinforcement learning. Int. J. Quantum Inf. 4(06), 1071–1083 (2006)

    Article  MATH  Google Scholar 

  24. Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Inf. Comput. 17, 1292 (2017)

    MathSciNet  Google Scholar 

  25. Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks. arXiv:1510.06356 (2015)

  26. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv:1412.3489 (2014)

  27. Pan, J., Cao, Y., Yao, X., Li, Z., Ju, C., Chen, H., Peng, X., Kais, S., Du, J.: Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A 89(2), 022–313 (2014)

    Article  Google Scholar 

  28. Cai, X.D., Wu, D., Su, Z.E., Chen, M.C., Wang, X.L., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett. 114(11), 110–504 (2015)

    Article  Google Scholar 

  29. Chen, J., Wang, L., Charbon, E.: A quantum-implementable neural network model. Quantum Inf. Process. 16(10), 245 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Inf. Process. 13(3), 757–770 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Zhang, G., Hu, L., Jin, W.: Resemblance coefficient and a quantum genetic algorithm for feature selection. In: International Conference on Discovery Science, pp. 155–168. Springer (2004)

  32. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130–503 (2014)

    Article  Google Scholar 

  33. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114(14), 140–504 (2015)

    Google Scholar 

  34. He, Z., Li, L., Huang, Z., Situ, H.: Quantum-enhanced feature selection with forward selection and backward elimination. Quantum Inf. Process. 17(7), 154 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. He, Z., Li, L., Zheng, S., Huang, Z., Situ, H.: A conditional generative model based on quantum circuit and classical optimization. Int. J. Theor. Phys. 58(4), 1138–1149 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Situ, H., He, Z., Li, L., Zheng, S.: Adversarial training of quantum born machine. arXiv preprint arXiv:1807.01235 (2018)

  37. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Conference on Empirical Methods in Natural Language Processing, pp. 1070–1079 (2008)

  38. Campbell, C., Cristianini, N., Smola, A., et al.: Query learning with large margin classifiers. In: International Conference on Machine Learning, pp. 111–118 (2000)

  39. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2((Nov)), 45–66 (2001)

    MATH  Google Scholar 

  40. Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classifiers. Mach. Learn. 54(2), 125–152 (2004)

    Article  MATH  Google Scholar 

  41. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory, pp. 287–294. ACM (1992)

  42. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Proceedings of the 20th International Conference on Neural Information Processing Systems, pp. 1289–1296 (2008)

  43. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 8th International Conference on Machine Learning, pp. 282–289 (2001)

  44. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  45. Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996)

  46. Kong, E.B., Diettrich, T.: Probability estimation via error-correcting output coding. In: International Conference of Artificial Intelligence and Soft Computing. Citeseer (1997)

  47. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  48. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  49. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. der Phys. Prog. Phys. 46(4–5), 493–505 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61802061, 61602532, 61772565, 61871205), the Innovation Project of Department of Education of Guangdong Province of China (No. 2017KTSCX180), the Science and Technology Project of Jiangmen City of China (No. 2018JC01019), the Natural Science Foundation of Guangdong Province of China (Grant No. 2017A030313378), the Project of Department of Education of Guangdong Province.(No. 2017KQNCX216), the Science and Technology Program of Guangzhou City of China (No. 201707010194) and the Fundamental Research Funds for the Central Universities (No.17lgzd29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haozhen Situ.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Li, L., Zheng, S. et al. Quantum speedup for pool-based active learning. Quantum Inf Process 18, 345 (2019). https://doi.org/10.1007/s11128-019-2460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2460-x

Keywords

Navigation