Skip to main content
Log in

Cryptanalysis of multi-party quantum key agreement with five-qubit Brown states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent paper (Cai et al. in Quantum Inf Process 17:103, 2018), a multi-party quantum key agreement with five-qubit Brown states was presented. We analyzed the security of this protocol and found that it is insecure because the fairness requirement is not satisfied. To illustrate it, a new participant attack is proposed, in which two dishonest participants conspire to decide the agreement key fully. Finally, a feasible improvement of this quantum key agreement protocol is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)

    Article  Google Scholar 

  2. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192 (2010)

    Article  ADS  Google Scholar 

  3. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  6. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sun, Z.W., Huang, J.W., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15, 2101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7, 15264 (2017)

    Article  ADS  Google Scholar 

  13. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 170 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement without entanglement. Int. J. Theor. Phys. 56, 1039 (2017)

    Article  Google Scholar 

  15. Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164 (2017)

    Article  MathSciNet  Google Scholar 

  16. Wang, L., Ma, W.P.: Quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quantum Inf. Process. 16, 130 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cai, B.B., Guo, G.D., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31, 1750102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cao, H., Ma, W.P.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Inf. Process. 17, 219 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Cai, B.B., Guo, G.D., Lin, S., Zuo, H.J., Yu, C.H.: Multipartite quantum key agreement over collective noise channels. IEEE Photonics J. 10, 7600211 (2018)

    Google Scholar 

  20. Jiang, D.H., Xu, G.B.: Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 17, 180 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states. Quantum Inf. Process. 17, 103 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on “Quantum exam”. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  23. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  Google Scholar 

  24. Lin, S., Gao, F., Guo, F.Z., et al.: Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93, 062343 (2016)

    Article  ADS  Google Scholar 

  29. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55, 55 (2016)

    Article  Google Scholar 

  30. Liu, B., Xiao, D., Jia, H.Y., Liu, R.Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process. 15, 2113 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mohajer, R., Eslami, Z.: Cryptanalysis of a multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 16, 197 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61772134, 61976053), the China Postdoctoral Science Foundation Funded Project (Grant No. 2016M600494), the Natural Science Foundation of Fujian Province (Grant Nos. 2016J01288, 2018J01776), the Probability and Statistics: Theory and Application (Grant No. IRTL1704), and the Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Guo, GD., Chen, AM. et al. Cryptanalysis of multi-party quantum key agreement with five-qubit Brown states. Quantum Inf Process 18, 358 (2019). https://doi.org/10.1007/s11128-019-2472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2472-6

Keywords

Navigation