Skip to main content
Log in

Enhancing distributed functional monitoring with quantum protocols

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In distributed functional monitoring (DFM), N players located at different sites; each observes a stream of items and communicates with one coordinator, whose goal is to compute a function of the union of the streams. In threshold monitoring, a special case of DFM, the coordinator wants to know whether \(f(v(t)) > T\), where v(t) is a binary vector that represents the state of the stream as an average of local states at the sites. In this paper, we enhance the classical geometric monitoring (GM) method with quantum communication and entanglement. The proposed quantum geometric monitoring (QGM) protocol can be further specialized by defining specific network topologies. In QGM-Flat, the coordinator is connected to all N players. When N becomes too large, the performance of QGM-Flat deteriorates. For a scalable implementation, we propose to organize the players in a tree structure, with the QGM-Tree protocol. We have implemented both QGM-Flat and QGM-Tree with SimulaQron, a novel Python library for the development and simulation of quantum networking applications. We analyze the proposed quantum protocols, showing that they outperform their classical counterparts in terms of reduced communication cost, while showing the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Afzelius, M., Simon, C., de Riedmatten, H., Gisin, N.: Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009). https://doi.org/10.1103/PhysRevA.79.052329

    Article  ADS  Google Scholar 

  2. Amoretti, M.: Entanglement evaluation protocols, Python code. https://github.com/qis-unipr/entanglement-verification. Accessed 25 Jun 2019

  3. Amoretti, M., Pizzoni, M.: QGM source code. https://github.com/qis-unipr/qgm (2019)

  4. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pp. 28–39. ACM (2003)

  5. Bahera, B., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. Quantum Inf. Process. 18, 108 (2019)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., William, K.: Purification of noisy entanglement, and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bussieres, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Simon, C., Tittel, W.: Prospective applications of optical quantum memories. J. Mod. Opt. 60(18), 1519–1537 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, NANOCOM ’18, pp. 3:1–3:4. ACM, New York, NY, USA (2018). https://doi.org/10.1145/3233188.3233224

  10. Cormode, G.: The continuous distributed monitoring model. SIGMOD Rec. 42(1), 5–14 (2013)

    Article  Google Scholar 

  11. Cormode, G., Garofalakis, M.: Join sizes, frequency moments, and applications. In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management, pp. 87–102. Springer, Berlin (2016)

    Chapter  Google Scholar 

  12. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring. ACM Trans. Algorithms 7(2), 21 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dahlberg, A., Wehner, S.: Simulaqron—A simulator for developing quantum internet software. Quantum Sci. Technol. 4, 015001 (2019)

    Article  ADS  Google Scholar 

  14. van Dam, S.B., Humphreys, P.C., Rozpedek, F., Wehner, S., Hanson, R.: Multiplexed entanglement generation over quantum networks using multi-qubit nodes. Quantum Sci. Technol. 2(3), 034002 (2017)

    Article  ADS  Google Scholar 

  15. Dilman, M., Raz, D.: Efficient reactive monitoring. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213), vol. 2, pp. 1012–1019 (2001)

  16. Fiorentino, M., Voss, P.L., Sharping, J.E., Kumar, P.: All-fiber photon-pair source for quantum communications. IEEE Photonics Technol. Lett. 14(7), 983–985 (2002)

    Article  ADS  Google Scholar 

  17. Giatrakos, N., Deligiannakis, A., Garofalakis, M.: Scalable approximate query tracking over highly distributed data streams. In: ACM SIGMOD ’16. ACM (2016)

  18. Greve, K.D., Yu, L., McMahon, P.L., Pelc, J.S., Natarajan, C.M., Kim, N.Y., Abe, E., Maier, S., Schneider, C., Kamp, M., Höfling, S., Hadfield, R.H., Forchel, A., Fejer, M.M., Yamamoto, Y.: Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012)

    Article  ADS  Google Scholar 

  19. Gundogan, M., Ledingham, P.M., Kutluer, K., Mazzera, M., de Riedmatten, H.: Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015)

    Article  ADS  Google Scholar 

  20. Hammerer, K., Sørensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)

    Article  ADS  Google Scholar 

  21. Holevo, A.S.: Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Inform. Transm. 9(3), 177–183 (1973)

    Google Scholar 

  22. Huang, L., Nguyen, X., Garofalakis, M., Hellerstein, J.M., Jordan, M.I., Joseph, A.D., Taft, N.: Communication-efficient online detection of network-wide anomalies. In: IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, pp. 134–142 (2007)

  23. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  24. Humphreys, P.: Deterministic delivery of remote entanglement on a quantum network. Nature 558, (2018)

  25. Hushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  26. Jobez, P., Usmani, I., Timoney, N., Laplane, C., Gisin, N., Afzelius, M.: Cavity-enhanced storage in an optical spin-wave memory. New J. Phys. 16(8), 083005 (2014)

    Article  ADS  Google Scholar 

  27. Keralapura, R., Cormode, G., Ramamirtham, J.: Communication-efficient distributed monitoring of thresholded counts. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06, pp. 289–300. ACM (2006)

  28. Kompella, K., Aelmans, M., Wehner, S., Sirbu, C.: Advertising entanglement capabilities in quantum networks. Internet-Draft draft-kaws-qirg-advent-00, IETF Secretariat (2018). http://www.ietf.org/internet-drafts/draft-kaws-qirg-advent-00.txt

  29. Krastanov, S., Albert, V.V., Jiang, L.: Optimized entanglement purification. Quantum J. 3, 123–141 (2019)

    Article  Google Scholar 

  30. Kurtsiefer, C., Oberparleiter, M., Weinfurter, H.: Generation of correlated photon pairs in type-ii parametric down conversion-revisited. J. Mod. Opt. 48(13), 1997–2007 (2001)

    ADS  Google Scholar 

  31. Li, M., Liu, Y.: Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sen. Netw. 5(2), 10:1–10:29 (2009)

    Article  MathSciNet  Google Scholar 

  32. Montanaro, A.: The quantum complexity of approximating the frequency moments. Quantum Inf. Comput. 16, 13–14 (2016)

    MathSciNet  Google Scholar 

  33. Nagy, M., Akl, S.G.: Entanglement verification with application to key distribution protocols. Par. Proc. Lett. 20(3), 227–237 (2010)

    Article  MathSciNet  Google Scholar 

  34. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  35. Panigrahi, P.K., Gupta, M., Pathak, A., Srikanth, R.: Circuits for distributing quantum measurement. In: AIP Conference Proceedings, vol. 864 (2006)

  36. Rozpedek, F., Schiet, T., Thinh, L., Elkouss, D., Doherty, A., Wehner, S.: Optimizing practical entanglement distillation. Phys. Rev. A 97, 062333 (2018)

    Article  ADS  Google Scholar 

  37. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold functions over distributed data streams. In: ACM SIGMOD ’06. ACM (2006)

  38. Steiger, D., Häner, T., Troyer, M.: Projectq: an open source software framework for quantum computing. Quantum 2(49), 10 (2018)

    Google Scholar 

  39. van Enk, S.J., Lütkenhaus, N., Kimble, H.J.: Experimental procedures for entanglement verification. Phys. Rev. A 75(5), 052318 (2007)

    Article  ADS  Google Scholar 

  40. Van Meter, Rodney: Quantum Networking. Wiley, London (2014)

    Book  Google Scholar 

  41. Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: A vision for the road ahead. Science 362(6412), 1–9 (2018). https://doi.org/10.1126/science.aam9288

    Article  MathSciNet  Google Scholar 

  42. Zhong, M., Hedges, M., Ahlefeldt, R., Bartholomew, J., Beavan, S., Wittig, S., Longdell, J., Sellars, M.: Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517(8), 177–180 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Axel Dahlberg and Stephanie Wehner for their support during our software development and debugging activities, and for adding features to SimulaQron that allowed us to implement fully working QGM protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Amoretti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoretti, M., Pizzoni, M. & Carretta, S. Enhancing distributed functional monitoring with quantum protocols. Quantum Inf Process 18, 371 (2019). https://doi.org/10.1007/s11128-019-2484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2484-2

Keywords

Navigation