Skip to main content
Log in

Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We perform security analysis of a passive measurement-device-independent (MDI) continuous-variable quantum key distribution (CVQKD) protocol with almost no public communication. In the passive MDI-CVQKD protocol, the quantum states are prepared passively by using thermal sources without Gaussian modulations at Alice’s and Bob’s sides. With this technique, Alice and Bob can precisely prepare quantum states to match the high transmission rate in MDI-CVQKD system at the corresponding speed. Here, both asymptotic regime and finite-size regime are considered. In asymptotic case, we derive the security bounds for the protocol against collective attacks, while in finite-size case we show a new conceptual development of passive MDI-CVQKD, namely the final secret key generation can be performed by using almost all raw keys instead of sacrificing part of raw keys for parameter estimation, and thus the improvement performance of passive MDI-CVQKD protocol can be achieved in finite-size scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    ADS  MATH  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    ADS  Google Scholar 

  3. Takeda, S., Fuwa, M., Van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2014)

    Google Scholar 

  4. Gessner, M., Pezzè, L., Smerzi, A.: Efficient entanglement criteria for discrete, continuous, and hybrid variables. Phys. Rev. A 94(2), 020101 (2016)

    ADS  Google Scholar 

  5. Braunstein, S.L., Van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    ADS  Google Scholar 

  7. Huang, P., Huang, J., Zhang, Z., Zeng, G.: Quantum key distribution using basis encoding of Gaussian-modulated coherent states. Phys. Rev. A 97, 042311 (2018)

    ADS  Google Scholar 

  8. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238 (2003)

    ADS  Google Scholar 

  9. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    ADS  Google Scholar 

  10. Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4, 035006 (2019)

    ADS  Google Scholar 

  11. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)

    ADS  MATH  Google Scholar 

  12. Yuan, Z.L., Dynes, J.F., Shields, A.J.: Avoiding the blinding attack in QKD. Nat. Photonics 4(12), 800 (2010)

    ADS  Google Scholar 

  13. Huang, J.Z., Kunz, J.S., Jouguet, P., Weedbrook, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A 89(3), 032304 (2014)

    ADS  Google Scholar 

  14. Qin, H.: Saturation attack on continuous-variable quantum key distribution system. Proc. SPIE 8899(2), 88990N (2013)

    Google Scholar 

  15. Qin, H., Kumar, R., Makarov, V., Alléaume, R.: Homodyne detector blinding attack in continuous-variable quantum key distribution. Phys. Rev. A 98(1), 012312 (2018)

    Google Scholar 

  16. Filip, R.: Continuous-variable quantum key distribution with noisy coherent states. Phys. Rev. A 77(2), 022310 (2008)

    ADS  Google Scholar 

  17. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  18. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108(13), 130502 (2012)

    ADS  Google Scholar 

  19. Da, S., Ferreira, T., Vitoreti, D., Xavier, G.B., Do Amaral, G.C., Temporao, G.P., Von Der Weid, J.P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2013)

    ADS  Google Scholar 

  20. Liu, Y., Chen, T.Y., Wang, L.J., Liang, H., Shentu, G.L., Wang, J., Cui, K., Yin, H.L., Liu, N.L., Li, L.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111(13), 130502 (2013)

    ADS  Google Scholar 

  21. Tang, Z., Liao, Z., Xu, F., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112(19), 190503 (2014)

    ADS  Google Scholar 

  22. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

    ADS  Google Scholar 

  23. Choi, Y., Kwon, O., Woo, M., Oh, K., Han, S.W., Kim, Y.S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93(3), 032319 (2016)

    ADS  Google Scholar 

  24. Xu, F., Curty, M., Qi, B., Qian, L., Lo, H.K.: Discrete and continuous variables for measurement-device-independent quantum cryptography. Nat. Photonics 9(12), 772 (2015)

    ADS  Google Scholar 

  25. Li, H.W., Yin, Z.Q., Pawłowski, M., Guo, G.C., Han, Z.F.: Detection efficiency and noise in a semi-device-independent randomness-extraction protocol. Phys. Rev. A 91(3), 032305 (2015)

    ADS  Google Scholar 

  26. Li, H.W., Yin, Z.Q., Chen, W., Wang, S., Guo, G.C., Han, Z.F.: Quantum key distribution based on quantum dimension and independent devices. Phys. Rev. A 89(3), 032302 (2014)

    ADS  Google Scholar 

  27. Liao, Q., Wang, Y., Huang, D., Guo, Y.: Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 26(16), 19907 (2018)

    ADS  Google Scholar 

  28. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9(6), 397 (2015)

    ADS  Google Scholar 

  29. Ma, X.C., Sun, S.H., Jiang, M.S., Gui, M., Liang, L.M.: Gaussian-modulated coherent-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(4), 042335 (2014)

    ADS  Google Scholar 

  30. Guo, Y., Liao, Q., Huang, D., Zeng, G.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95(4), 042326 (2017)

    ADS  Google Scholar 

  31. Li, Z., Zhang, Y.C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    ADS  Google Scholar 

  32. Zhang, Y.C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    ADS  Google Scholar 

  33. Chen, Z., Zhang, Y., Wang, G., Li, Z., Guo, H.: Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks. Phys. Rev. A 98(1), 012314 (2018)

    ADS  Google Scholar 

  34. Qi, B., Evans, P.G., Grice, W.P.: Passive state preparation in the Gaussian-modulated coherent-states quantum key distribution. Phys. Rev. A 97(1), 012317 (2018)

    ADS  Google Scholar 

  35. Bai, D., Huang, P., Ma, H., Wang, T., Zeng, G.: Passive state preparation in continuous-variable measurement-device-independent quantum key distribution. J. Phys. B 52(13), 135502 (2019)

    ADS  Google Scholar 

  36. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    ADS  Google Scholar 

  37. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    ADS  Google Scholar 

  38. Leverrier, A., García-Patrón, R., Renner, R., Cerf, N.J.: Security of continuous-variable quantum key distribution against general attacks. Phys. Rev. Lett. 110(3), 030502 (2013)

    ADS  Google Scholar 

  39. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    ADS  Google Scholar 

  40. Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96(4), 042332 (2017)

    ADS  Google Scholar 

  41. Kumar, R., Qin, H., Alléaume, R.: Coexistence of continuous variable QKD with intense DWDM classical channels. New J. Phys. 17(4), 043027 (2015)

    ADS  Google Scholar 

  42. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    ADS  Google Scholar 

  43. Huang, D., Huang, P., Wang, T., Li, H., Zhou, Y., Zeng, G.: Continuous-variable quantum key distribution based on a plug-and-play dual-phase-modulated coherent-states protocol. Phys. Rev. A 94(3), 032305 (2016)

    ADS  Google Scholar 

  44. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    ADS  Google Scholar 

  45. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    ADS  Google Scholar 

  46. García-Patrón, R.: Quantum Information with Optical Continuous Variables: From Bell Tests to Key Distribution. Universite Libre De Bruxelles, Brussels (2007)

    Google Scholar 

  47. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)

    ADS  Google Scholar 

  48. Zhang, X., Zhang, Y., Zhao, Y., Wang, X., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)

    ADS  Google Scholar 

  49. Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Parameter estimation with almost no public communication for continuous-variable quantum key distribution. Phys. Rev. Lett. 120(22), 220505 (2018)

    ADS  Google Scholar 

  50. Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: CV MDI QKD: composable security against coherent attacks. Phys. Rev. A 97(5), 052327 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61801522) and National Nature Science Foundation of Hunan Province, China (Grant No. 2019JJ40352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wang, Y., Li, S. et al. Security analysis of passive measurement-device-independent continuous-variable quantum key distribution with almost no public communication. Quantum Inf Process 18, 372 (2019). https://doi.org/10.1007/s11128-019-2486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2486-0

Keywords

Navigation