Skip to main content
Log in

Implementing two-qubit phase gates by exchanging non-Abelian quasiparticles

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study how to implement two-qubit phase gates by exchanging non-Abelian quasiparticles. We firstly investigate quantum dynamics of a single trapped ion with two stable electronic ground states and with a larger energy gap from the rest of the spectrum, which is held in the Lamb–Dicke regime of a driven optical lattice. A set of degenerate Schrödinger’s cat states with the same expected energy is found, and wavepackets of the probability densities occupying different spin states are identical to the quasiparticles obeying the proposed non-Abelian interchange. The controlled transitions between different instantaneous degenerate ground states are illustrated for an array of \(\delta \)-shaped laser pulses. Making use of the mathematical equivalence between the single-ion system and the center-of-mass system of two trapped ions, the two-qubit phase gates are implemented by exchanging the non-Abelian quasiparticles of the center-of-mass motion via the periodic state-dependent forces. Such phase gates depend on geometric and topological properties of the system, which makes them resistant to certain errors. The results can be justified with the current experimental capability and may be extended to an array of weakly coupled trapped-ion pairs for demonstrating the non-Abelian statistics of the quasiparticles and for encoding the topological qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Stern, A.: Non-Abelian states of matter. Nature (London) 464, 187 (2010)

    Article  ADS  Google Scholar 

  3. Moore, G., Read, N.: Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Kauffman, L.H., Lomonaco, S.J.: Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum Inf. Process. 17, 201 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sarma, S.D., Freedman, M., Nayak, C.: Topologically protected qubits from a possible non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)

    Article  ADS  Google Scholar 

  6. Ivanov, D.A.: Non-Abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  7. Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

    Article  ADS  Google Scholar 

  8. Elliott, S.R., Franz, M.: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  10. Ben-Shach, G., Laumann, C.R., Neder, I., Yacoby, A., Halperin, B.I.: Detecting non-Abelian anyons by charging spectroscopy. Phys. Rev. Lett. 110, 106805 (2013)

    Article  ADS  Google Scholar 

  11. Stern, A., Halperin, B.I.: Proposed experiments to probe the non-Abelian \(\nu =5/2\) quantum Hall state Phys. Rev. Lett. 96, 016802 (2006)

    Article  ADS  Google Scholar 

  12. Bonderson, P., Shtengel, K., Slingerland, J.K.: Probing non-Abelian statistics with quasiparticle interferometry. Phys. Rev. Lett. 97, 016401 (2006)

    Article  ADS  Google Scholar 

  13. Feldman, D.E., Kitaev, A.: Detecting non-Abelian statistics with an electronic Mach–Zehnder interferometer. Phys. Rev. Lett. 97, 186803 (2006)

    Article  ADS  Google Scholar 

  14. Galindo, C., Rowell, E., Wang, Z.H.: On acyclic anyon models. Quantum Inf. Process. 17, 245 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Mong, R.S.K., Zaletel, M.P., Pollmann, F., Papić, Z.: Fibonacci anyons and charge density order in the \(12/5\) and \(13/5\) quantum Hall plateaus. Phys. Rev. B 95, 115136 (2017)

    Article  ADS  Google Scholar 

  16. Pu, H., Maenner, P., Zhang, W.P., Ling, H.Y.: Adiabatic condition for nonlinear systems. Phys. Rev. Lett. 98, 050406 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hai, W., Xie, Q., Fang, J.: Quantum chaos and order based on classically moving reference-frames. Phys. Rev. A 72, 012116 (2005)

    Article  ADS  Google Scholar 

  18. Chen, H., Tan, J.T., Hai, K., Zhang, X.L., Hai, W.: Controlling instability and phase hops of a kicked two-level ion in Lamb-Dicke regime. Eur. Phys. J. D 69, 278 (2015)

    Article  ADS  Google Scholar 

  19. Leggett, A.J.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  Google Scholar 

  20. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)

    Article  ADS  Google Scholar 

  21. Li, L., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton-on-plane-wave solutions for two-component Bose–Einstein condensates. Phys. Rev. E 73, 066610 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gu, F.L., Liu, J., Mei, F., Jia, S.T., Zhang, D.W., Xue, Z.Y.: Synthetic spin-orbit coupling and topological polaritons in Janeys–Cummings lattices. npj Quantum Information 5, 36 (2019)

    Article  ADS  Google Scholar 

  23. Abdumalikov Jr., A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature (London) 496, 482 (2013)

    Article  ADS  Google Scholar 

  24. Golubev, N.V., Kuleff, A.I.: Control of populations of two-level systems by a single resonant laser pulse. Phys. Rev. A 90, 035401 (2014)

    Article  ADS  Google Scholar 

  25. Chen, H., Kong, C., Hai, W.: Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion. Results Phys. 9, 424 (2018)

    Article  ADS  Google Scholar 

  26. Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53 (2007)

    Article  ADS  Google Scholar 

  27. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272, 1131 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kienzler, D., Fluhmann, C., Negnevitsky, V., Lo, H.Y., Marinelli, M., Nadlinger, D., Home, J.P.: Observation of quantum interference between separated mechanical oscillator wave packets. Phys. Rev. Lett. 116, 140402 (2016)

    Article  ADS  Google Scholar 

  29. Moore, F.L., Robinson, J.C., Bharucha, C.F., Williams, P.E., Raizen, M.G.: Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos. Phys. Rev. Lett. 73, 2974 (1994)

    Article  ADS  Google Scholar 

  30. Mizrahi, J., Senko, C., Neyenhuis, B., Johnson, K.G., Campbell, W.C., Conover, C.W.S., Monroe, C.: Ultrafast spin-motion entanglement and interferometry with a single atom. Phys. Rev. Lett. 110, 203001 (2013)

    Article  ADS  Google Scholar 

  31. Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 1 (2013)

    Article  MATH  Google Scholar 

  32. Zakrzewski, J.: Analytic solutions of the two-state problem for a class of chirped pulses. Phys. Rev. A 32, 3748 (1985)

    Article  ADS  Google Scholar 

  33. Kapit, E., Ginsparg, P., Mueller, E.: Non-Abelian braiding of lattice bosons. Phys. Rev. Lett. 108, 066802 (2012)

    Article  ADS  Google Scholar 

  34. Yu, L.W.: Local unitary representation of braids and N-qubit entanglements. Quantum Inf. Process. 17, 44 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Hu, S., Cui, W.X., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Multi-qubit non-adiabatic holonomic controlled quantum gates in decoherence-free subspaces. Quantum Inf. Process. 15, 3651 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Hardy, L., Song, D.D.: Universal manipulation of a single qubit. Phys. Rev. A 63, 032304 (2001)

    Article  ADS  Google Scholar 

  38. Cui, S.X., Hong, S.M., Wang, Z.H.: Universal quantum computation with weakly integral anyons. Quantum Inf. Process. 14, 2687C2727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Palmero, M., Martínez-Garaot, S., Leibfried, D., Wineland, D.J., Muga, J.G.: Fast phase gates with trapped ions. Phys. Rev. A 95, 022328 (2017)

    Article  ADS  Google Scholar 

  40. Malinovsky, V.S., Sola, I.R., Vala, J.: Phase-controlled two-qubit quantum gates. Phys. Rev. A 89, 032301 (2014)

    Article  ADS  Google Scholar 

  41. Sorensen, A., Molmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  42. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  43. Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J., Monroe, C.: Experimental entanglement of four particles. Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  44. Leibfried, D., DeMarco, B., Meyer, V., Lucas, D., Barrett, M., Britton, J., Itano, W.M., Jelenković, B., Langer, C., Rosenband, T., Wineland, D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  45. Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)

    Article  ADS  Google Scholar 

  46. Li, H.Z.: Global Properties of Simple Physical Systems, Chapter 8 Topological Analyses of Geometrical Phases. Shanghai Scientific and Technical Publishers, Shanghai (1998). (in Chinese)

    Google Scholar 

  47. Zeng, J.Y.: Quantum Mechanics (Vol. 2), Chapter 4 Phase in Quantum Mechanics. Science Press, Beijing (2000). (in Chinese)

    Google Scholar 

  48. Poyatos, J.F., Cirac, J.I., Zoller, P.: Quantum gates with hot trapped ions. Phys. Rev. Lett. 81, 1322 (1998)

    Article  ADS  Google Scholar 

  49. Schuetz, M.J.A., Giedke, G., Vandersypen, L.M.K., Cirac, J.I.: High-fidelity hot gates for generic spin-resonator systems. Phys. Rev. A 95, 052335 (2017)

    Article  ADS  Google Scholar 

  50. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  51. Gardiner, S.A., Cirac, J.I., Zoller, P.: Quantum chaos in an ion trap: the delta-kicked harmonic oscillator. Phys. Rev. Lett. 79, 4790 (1997)

    Article  ADS  Google Scholar 

  52. Berman, G.P., James, D.F.V., Hughes, R.J., Gulley, M.S., Holzscheiter, M.H., López, G.V.: Dynamical stability and quantum chaos of ions in a linear trap. Phys. Rev. A 61, 023403 (2000)

    Article  ADS  Google Scholar 

  53. Wu, Y., Yang, X.X.: Jaynes-Cummings model for a trapped ion in any position of a standing wave. Phys. Rev. Lett. 78, 3086 (1997)

    Article  ADS  Google Scholar 

  54. Lu, G., Hai, W., Xie, Q.: Controlling quantum motions of a trapped and driven electron: an exact analytic treatment. J. Phys. A 39, 401 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Chen, Q., Hai, K., Hai, W.: Controlling quantum motions of a Paul trapped ion via a double rf driving. J. Phys. A 43, 455302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Hai, K., Luo, Y., Chong, G., Chen, H., Hai, W.: Ultrafast generation of an exact Schrödinger-cat state. Quantum Inf. Comput. 17, 456 (2017)

    MathSciNet  Google Scholar 

  57. Xu, Z.H., Li, L.H., Chen, S.: Fractional topological states of dipolar fermions in one-dimensional optical superlattices. Phys. Rev. Lett. 110, 215301 (2013)

    Article  ADS  Google Scholar 

  58. Lang, L.J., Cai, X.M., Chen, S.: Edge states and topological phases in one-dimensional optical superlattices. Phys. Rev. Lett. 108, 220401 (2012)

    Article  ADS  Google Scholar 

  59. Liu, H.D., Yi, X.X., Fu, L.B.: Berry phase and Hannays angle in the BornCOppenheimer hybrid systems. Ann. Phys. 339, 1 (2013)

    Article  ADS  Google Scholar 

  60. Ganpathy, M., Shankar, R.: Hamiltonian theories of the fractional quantum Hall effect. Rev. Mod. Phys. 75, 1101 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical Schrödinger kittens for quantum information processing. Sciences 312, 83 (2006)

    Article  Google Scholar 

  62. García-Ripoll, J.J., Zoller, P., Cirac, J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  63. Greiter, M., Haldane F. D. M., Thomale R.: Non-Abelian Statistics in one dimension: topological momentum spacings and SU(2) level \(k\) fusion rules. arXiv:1905.09728 (2019)

  64. Simeonov, L.S., Ivanov, P.A., Vitanov, N.V.: Speeding up conditional quantum logic of trapped ion qubits with overlapping pulses. Phys. Rev. A 89, 012304 (2014)

    Article  ADS  Google Scholar 

  65. Duan, L.M.: Scaling ion trap quantum computation through fast quantum gates. Phys. Rev. Lett. 93, 100502 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11475060 and 11204077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Hai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Kong, C., Hai, K. et al. Implementing two-qubit phase gates by exchanging non-Abelian quasiparticles. Quantum Inf Process 18, 379 (2019). https://doi.org/10.1007/s11128-019-2492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2492-2

Keywords

Navigation